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Chapter 1

Foundations

1.1 Norm and normed vector space

Definition 1.1.1. 1. A normed vector space (X, |-||) is a pair consisting a vector space X
over F and a function called norm |[|-|| : X — R>¢ s.t.

(1) |lv]] =0 if and only if v =0
(2) for any ¢ € F and v € X, we have ||cv|| = || - ||v]]
(3) for any u,v € X, we have [|u+ v|| < ||z| + ||v]|.

2. A normed vector space (X, ||-||) defines a metric d : X x X — R>g by
A, v) = Jlu — o],
which then induces a metric topology.
3. A complete normed vector space is called a Banach space.

Example 1.1.2. 1. For any 1 < p < oo, define
0. 9]
= {{z:}2] SR |aif? < oo}
i=1

Then (P is a Banach space with the norm defined by

00 1/p
{zi}iZill, = (Z |$z‘|p> -
i=1

2. Define
0= {{zi}21 C R :sup |z;| < oo}
i>1

Then ¢ is a Banach space with the norm defined by

[{zi}iZill o o= sup |zi.
1>1
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3. Let X be a topological space, define
Cy(X) :={f : X — R continuous and bounded},

then Cp(X) is a Banach space with the supremum norm
[fllo == sup [f(z)], Vf € Cy(X).
rzeX

Proposition 1.1.3. ||| : X — R is continuous.

Proof. For u,v € X,

lull = llv+ (u =)} < floll + [lu =l
thus ||u]| — ||v]] < ||u — ||, similarly, [|v|| — ||u|| < [Ju — v]|, then we have
[l = ol < flu =l
which means ||-|| is Lipschitz continuous and hence continuous. ]

Definition 1.1.4. Suppose (X, ||-||x) and (Y, ||-|ly-) are two normed vector spaces.

1. A function A : X — Y is called bounded if there is a ¢ > 0, s.t. for any w € X,

[Awlly < cljw]x -

2. The smallest such ¢ is called the operator norm of A, denoted as [|A]], i.e.

[Aw]ly

[All = :
weX\{0} |wll x

3. Define £L(X,Y)={A: X — Y s.t. Ais linear and bounded}.
Proposition 1.1.5. Suppose ||| is the operator norm defined on L(X,Y), then
1. For any A€ L(X,Y) andw € X,

[Aw]ly < A} lwlly -

2. The operator norm is a norm. Thus (L(X,Y),|]|) is a normed vector space. The resulting
metric topology is called the uniform operator topology.

3. Forany A€ L(X,Y),
[Awlly

Al =
wex\{oy 1wl x

= sup [Awlly
weX, |w|| <1

= sup  [Awly .
weX,|w] x=1

6
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Theorem 1.1.6. Suppose (X, ||-|| ) and (Y, ||-|ly) are two normed vector spaces, A: X =Y
is linear, then TFAFE

1. A is bounded
2. A is continuous
3. A is continuous at 0.
Proof. 1 = 2. Suppose A is bounded, then for any u,v € X,
dy (Au, Av) = [ Au— Avlly = [|A(u = y)lly < Al llu = yllx = Al dx (u,p),

thus A is Lipschitz continuous, hence continuous.

2 = 3: Obvious.

3 = 1: Suppose A is continuous at 0. Take ¢ = 1, then there is a 6 > 0 s.t. for any
|lul|x < 0, we have ||Aully- < 1. Let w € X \ {0},

2 ||wl x H ow 2
Awlly = A < = -w|y,
where dw/(2 ||w]|| x) has the norm g < 4. N

Corollary 1.1.7. Suppose X,Y are normed vector spaces, and A € L(X,Y). Then Ker (A)
is a closed subspace of X.

Proof. Let {x1}7°, is a convergent sequence in Ker (A) and # € X is the limit, then by the
continuity of A,

Azr = A(lim z) = lim Az, =0,
k—o0 k—o0

thus = € Ker (A), and hence Ker (A) is closed. ]

1.2 Finite-dimensional normed vector space

Definition 1.2.1. Suppose ||-||; and [-||, are two norms on X. They are called equivalent if
there is 0 < ¢; < ¢9 s.t. for any w € X,

crfJwlly < flwlly < ez flwlly -

Theorem 1.2.2. Suppose X is a finite-dimensional vector space over F(= R or C). Then
any two norms on X are equivalent.

Proof. 1. Choose the standard basis {e;}/_; for X, then for any x = S| xjej, define the

j=1
norm || - |2 on X by

2y =
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Suppose [|-|| is any other norm on X, then
n n n n n
2
lzll = || D wies|| < D lwgesll = D lajlllesll < x5 lejll™ = ez llzll
j
j=1 j=1 j=1 j=1 j=1

where ¢ = /370, llej|| is a constant.
2. For the other inequality, consider

S={veX: =1}

Let n = dim X, then S C R", easy to check S is closed and bounded, therefore compact by
Heine-Borel theorem. And ||-|| : S — R is continuous by Proposition 1.1.3. Thus ||-|| achieves
its minimum ¢; on S. For any non-zero w € X, w/ ||w||, € S, then

w
> cq,

lwll

pe. fwl > e 0
Corollary 1.2.3. Fvery finite-dimensional normed vector space is Banach.

Corollary 1.2.4. Every finite-dimensional subspace of a normed vector space is closed.

Proof. By Corollary 1.2.3, any finite-dimensional normed vector space is Banach, thus com-
plete, and every complete subspace is closed. ]

Corollary 1.2.5. Suppose (X, ||-||) is a finite-dimensional normed vector space. Then K C X
is compact if and only if K is closed and bounded.

Corollary 1.2.6. Suppose (X, ||-||x) and (Y, ||ly) are two normed vector spaces and X is
finite-dimensional. Then every linear map A : X — Y s continuous.

Proof. Suppose A : X — Y is linear, define a new norm ||-||, on X by
l2lla = llzllx + [|Az]ly, vz e X
Since X is finite-dimensional, ||-|| 4 is equivalent to [-|| x, then there is ¢ > 0 s.t.
[Az]ly < flzll4 < cllzllx

i.e. A is bounded and hence continuous. L]

Theorem 1.2.7. Suppose (X, ||-||) is a normed vector space, let
B={veX:|v|<1}, S={veX:|v|=1}

Then TFAE:
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1. dim X < .
2. B is compact.
3. S is compact.
To prove Theorem 1.2.7, we need the following Lemma.

Lemma 1.2.8 (Riesz’s Lemma). Suppose (X, ||||) is a normed vector space, Y C X is a
closed subspace, then for any § € (0,1), there ezxists w € X (actuallyw € X\Y ) s.t. ||w|| =1
and

lw—yl|>1-6 VyeY.

Proof. 1. Since Y C X, we can find wy € X \ Y.
2. Since Y is closed, X \ Y is open, then there is an open ball B, (wy) with radius r > 0 s.t.
By (x) C X \Yie By(wp)NY =@. Then

d = inf ||wo —y|| > r > 0.
yey

3. By the definition of inf (d is the maximal lower bound of ||wg — y|| for y € Y, any number
greater than d is no longer a lower bound), there is ygp € Y s.t.

d
lwo — woll < —=

1—46
4. Let w = Hwo —?JOH7 then ||w|| = 1 and for any y € Y,
wo — Yo
Hw_yH:HM_ H
llwo — wol|
1
= T " llwo — (Yo + ¥y [[wo — Yo
Tao—gon 10 = (o +yllwo = ol
d
= llwo = wol| (since yo + y ||wo — yo|| € Y and d is a lower bound)
> d
—d/(1-)9)
=1-4.

O

Proof (Theorem 1.2.7). 1 = 2 = 3 is clear. Left to show 3 = 1. We will prove by
contradiction.

1. Assume S is compact and X is infinite-dimensional. Let x; € S and Y7 = Span({z1}). Y1
is closed by Corollary 1.2.4. By Riesz’s Lemma, we can find z3 € X \ Y] s.t.

o2l =1 and |21 — 22| >

?

DO | —
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it’s clear zo € S.
2. Inductively, suppose we have found {z1,--- ,2,} C S s.t.

1
lzi —2jll > 5, V1<i#j<n.

Let Y,, = Span({x1, 2, - ,zn}), Yy is closed thus by Riesz’s Lemma, we can find x,4; €
X\Y, s.t.

V1<i<n.

DN | —

|znt1ll =1 and  [Jopy — 2] >

3. In this way, we can construct a sequence {z;}72, € S (infinite-dimension guarantees that
we can find infinitely many z;) s.t.

1 o
|z; — 5] > 5 Vi # 7,

which obviously has no Cauchy subsequences thus no convergent subsequences. This con-
tradicts that S is compact. [l

Remark. This theorem tells us compactness may be lost in infinite-dimensional normed
vector spaces.
1.3 Quotient space
Definition 1.3.1. Let (X, ||-||) be a normed vector space, and Y C X is a closed subspace.

1. Define equivalence relation ~ on X by

r~Yy <—=xr—yecy,
and denote [z] := {y € X : y ~ 2} to be the equivalence class containing z.
2. Define the quotient space by X /Y = {[z] : z € X}.

3. Define a norm |[-[|x - on X/Y by

= inf ||z + .
izl y = g 1z + yllx

Lemma 1.3.2. [|-[|x )y defined above is a norm on X /Y.

1.4 Dual space

Theorem 1.4.1. Suppose X is a normed vector space and Y is a Banach space. Then
L(X,Y) is a Banach space.

10
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Proof. 1. Suppose {A,}>°, € L(X,Y) is a Cauchy sequence, our goal is to show its limit is
also contained in £(X,Y).
2. For any w € X, {A,w}>2,; CY is also a Cauchy sequence because

[Apw — Apwlly < [|An — Apl| lwllx -
Since Y is Banach, {4, w} >, has a limit in Y, denoted as

Asow := lim A,w.
n—oo

3. We can pointwise define A : X — Y by w— Asw. Then Ay is linear.
4. A, = Ay w.r.t. operator topology.
Since {A,}>°, is Cauchy, for any € > 0, there is N, € Z4 s.t. for any m,n > N,

|An — A < e.
Thus
| Asow — AanY < || Asow — AmeY + [[Apw — Anw”Y < | Asow — Amw”Y te ”wHX )

let m — oo, we have
[Ascw — Apwlly <efwlly,

e ||Aoo — Anll <e.
5. Ay is bounded. From Step 4 and Ay, € £(X,Y) hence bounded, we have

[Ascwlly < [[Acw = AN wlly +[[An.wlly <ellwllx +[[An - [wlx = (e + | AN D [[w] x - T

Definition 1.4.2. Suppose X is a normed vector space, X* := £L(X,R) is called the dual
space of X.

Remark. From Theorem 1.4.1, although X may not be Banach, X* is always a Banach
space.

Definition 1.4.3. Suppose (X, ||-||x) and (Y, ||-|ly-) are two normed vector spaces.

1. Amap A: X — Y is called isometric (or an isometric embedding) if it preserves the norm,
ie. ||Aw|y = |Jw| y for all w € X.

2. An isometric map A : X — Y is called an isometry if it is bijective.
3. A linear isometry A : X — Y is called an isometric isomorphism.
Remark. 1. Any linear isometric map is continuous because it is 1-Lipschitz.

2. Any linear isometric map is injective. Suppose there is wi,ws € X s.t. Aw; = Aws,
then A(w; —wg) = 0. Since A is isometric, we have 0 = ||A(w; — w2)|ly = |Jw1 — w2y,
then wi = ws.

11
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3. An isometric isomorphism gives an equivalence relation.

4. An isometric isomorphism preserves all necessary properties between two normed vector
spaces, so we can regard two normed vector spaces as the same if there is an isometric
isomorphism between them.

Example 1.4.4. (R")* =R"

1 1
Example 1.4.5. For any p,q € (1,00) with — + — =1, we have [LP(u)]* = Li(u).
p

Example 1.4.6. [L'(p)]* = L>®(p).

—_

1
Example 1.4.7. For any p,q € (1,00) with — + — = 1, we have (/F)* = (4.
p

Proof. Define ¢ : (1 — ((P)* as follows, for any x = {x;}°, € 04, y = {y;}2, € 7,

<

S(x)(y) = > wiyi.
i=1

Then ¢ is well-defined (¢(z) € (¢P)*), linear, isometric and bijective, i.e. it is an isometric
isomorphism. ]

Example 1.4.8. (¢1)* = (>,

Proof. Define a map ¢ : £ — (£1)* as follows, for any z = {z;}3°, € £, y = {y;}2°, € (%,
$(2)(y) = > wiyi.
i=1
Example 1.4.9. let ¢o := {(21,22,---) € RN : 2; — 0} C ¢>°. Then (cp)* = ¢*.

1.5 Hilbert space

Definition 1.5.1. Let H be a real vector space.
1. A bilinear map (-,-) : H x H — R is called an inner product if it is

(1) symmetric: (z,y) = (y,z) for all z,y € H;
(2) and positive definite: (x,z) > 0 for all x € H \ {0}.

2. (H,(-,-)) is called an inner product space (often denoted as H for short).
3. Define a norm on an inner product space by ||z|| = \/(z, x).
4. An inner product space (H, (-,-)) is called a Hilbert space if (H,|-||) is a Banach space.

12
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Proposition 1.5.2. Suppose H is an inner product space. Then for any x,y € H,
1. Polarization identity: 2(x,y) = ||z +y|* — ||lz||* — |ly||*.

2. Parallelogram law: ||z +y|* + |z — y[|* = 2]|z|* + [|y]|*.

3. Cauchy-Schwarz inequality: |(z,y)| < ||z [|y||-

4. Triangle inequality: ||z + y|| < [|z|| + ||y||-

Remark. From 4, ||| is indeed a norm on H.

Theorem 1.5.3 (Riesz). Suppose H is a Hilbert space. The map A : H — H* defined by
A(y) = (-, y) is an isometric isomorphism.

Definition 1.5.4. Suppose 2 is a subset of a vector space. €2 is called convex if for any
u,v € Qand t € [0, 1], we have
tu+ (1 —t)v € Q.

Example 1.5.5. Suppose X is a vector space, then
1. X and @ are convex.
2. Suppose ||-|| is a norm defined on X, then for any x¢ € X, the unit ball
Bi(zg) :={z € X : ||z — xo| < 1}
is convex.
3. Any subspace of X is convex.
Proof. For any u,v € By(xp) and t € [0, 1],

ltu 4+ (1 — t)v — x| < |[tu — txo|| + [[(1 —)v — (1 — t)xol| =t ||lu — 20| + (1L — ¢) |Jv — 20| < 1.
]

Lemma 1.5.6. Suppose H is a Hilbert space and K C H is a non-empty, closed and convex
subset. Then there is a unique element xg € K s.t. ||xo|| < ||z|| for all x € K.

Proof. 1. Since {||z|| : # € K} has a lower bound 0, it must have an inf, let
d =inf{||z]| : z € K} > 0.
By the definition of inf, for any n € Z, there is z,, € K s.t.
1
§ <||zpl| <6+ —,
n
then there exists a sequence {z,}>°; C K s.t.
lim ||z, = 0.
n—oo

13
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2. Claim: {x,}>?, is a Cauchy sequence.

Given € > 0, there is N € Z,, s.t. for any n > N,
2

lenll® < 6% +

1 2
solving the inequality § + — < /462 + = gives the value of N). For any m,n > N, since K
& N 1

is convex, we have

Tm + Zn €K,
2
thus N
HM > 5
5 >
Then

2
£
lzm = 2nll® = 2 laml” + 2 l2n]” = l|zm + 2n]* < 4(5° + ) — 46% = £,

i.e. ||z — xn| < e and hence {z,}>2, is Cauchy.
3. Since H is Hilbert and K is closed, K is complete. Then there is x € K s.t. z, = 2.
Therefore by the continuity of norm,

menz(pnnxn — lim || = 6.
n—oo n—o0

4. Uniqueness. Suppose there is y € K with ||y|| = 6. Then (y + z)/2 € K, thus

ly + zool| > 26.

Then
ly — zooll* = 2y + 2 lzse|® — lly + 2oc® < 267 + 262 — 462 = 0,

which implies y = z. [

Proof of Theorem 1.5.53. 1. It’s clear A : H — H* is linear, we will show it is also isometric.
For any y € H, recall A(y)(:) = (-,y), then

x, x
Al = sup LWl gy Lellol
vemvioy 1zl 7 zemqoy Izl

Since A(y) € H* is bounded, we have

lyll* = 1AW )] < 1AWy

thus |ly|| < [[A(y)]|. Therefore ||A(y)|| = ||y|| for any y € H, i.e. A is isometric.
2. Since the linear isometric map is already injective, we only need to show A is surjective.
If ¢ =0, then ¢ = A(0). Let ¢ € H*\ {0} and K = {x € H : ¢(x) = 1}. Then K is:

14
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(1) Non-empty. Since ¢ # 0, there is £ € H s.t. ¢(£) #0. Let z = £/¢(€), then ¢(z) = 1.
(2) Closed. Because ¢ is continuous and {1} is closed.
(3) Convex. For any u,v € K, and ¢ € [0, 1],
dtu+ (1 —t)v) =top(u) + (1 —t)op(v) =t + (1 —t) =1,
thus tu + (1 — t)v € K.

By Lemma 1.5.6, there is zg € K s.t. ||zo|| < ||z|| for any = € K.
3. Claim: z¢ L Ker ¢.
Let y € Ker ¢, we need to show (xg,y) = 0. For any t € R,

xo+ty € K,
from Step 2,
lzoll® < llwo + tyl* = llzoll” + ¢ [lyl* + 2t(zo, y).
Let f(t) = ||zo + ty||*, then f(¢) attains its minimum at ¢ = 0, we have

0= L 5(0) = 2(z0.4).

thus (xg,y) = 0.
4. For any x € H, our goal is to find y € H, s.t. ¢(z) = A(y)(x), i.e. A is surjective. Recall
od(zp) =1, so

¢(z — d(x)r0) = ¢(x) — d(x)(w0) =0,

which means = — ¢(x)zo € Ker ¢. By Step 3,

(x0, 2 — ¢(x)r0) = 0,

i.e.
(w0, ) = {z0, $()0) = H(x) ||zl
thus . .
3(z) = (1, —5) = A(—5)(2). O
BN ol

Corollary 1.5.7. Suppose H is a Hilbert space, then for any ¢ € H*, there is a unique
ye H, s.t.
¢(z) = (z,y), VreH.

Definition 1.5.8. Let S C H be a subset of a Hilbert space. Define
St={zeH:(x,y)=0, Vye S}

Remark. By Theorem 1.5.3; S+ is the same (in the sense of isometric isomorphism) as the
annihilator of S, i.e. {¢p € H* : ¢(y) =0, Yy € S}.

15
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Corollary 1.5.9. Suppose H is a Hilbert space and E C H is a closed subspace, then
H=EoE™"

Proof. Tt suffices to prove H = E + E+ and EN E+ = {0}. It’s clear 0 € EN E*+. On the
other hand, for any 2 € E N EL, (z,z) = 0, which implies 2 = 0, thus £ N E+ = {0}.
For any y € E, y + E is non-empty, closed and convex, then by Lemma 1.5.6, there is a
unique element £ € E, s.t.

ly+&ll <zl Veey+E.

Foranyee Fandte R, y+{+tecy+ E. Let
F&) = lly +& +tell = lly + &7+ [lell + t(y + &, e),
since f attains its minimum at ¢ = 0, we have
0=f"(0)=(y+¢e),
ie. y+&e B therefore y = (=€) + (y +&) € E+ E*. ]
Corollary 1.5.10. Suppose H is a Hilbert space and E C H is a closed subspace, then
E = (EH)*.
Proof. 1. Let x € (EY)* C H, x = 21 + x5 for some z1 € E and x5 € E+, which implies
(x1,m9) =0, (m,x9) =0,

then (x9,x9) = (r — x1,22) = 0, i.e. 9 =0 and hence z = 27 € E. For the other direction,
since £+ is always closed (See Definition 2.6.1), H = E+ @ (E+)%. Then for any x € E,
x = x1 + 9 for some z; € B+ and x5 € (E1)*, then

(r,21) =0, (x1,22) =0,

sox; =0and z =x9 € (EH)*. O]

The following is an application of Riesz representation theorem.

Theorem 1.5.11 (Lax-Milgram). Suppose H is a real Hilbert space. Let B : H x H — R be
a bilinear and there exists o, f > 0 s.t. for any u,v € H,

1 [Blu,v)| < a flull o]

2. Blu,u) > B ull

Then for any ¢ € H*, there is a unique v € H s.t. for anyv € H,
B(u,v) = ¢(v).

16
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Proof. 1. For a fixed v € H, define T, : H — R by T,(-) = B(u,-), then T}, is linear and
bounded, i.e. T, € H*. By Riesz representation theorem (1.5.3), there is a unique w € H,
s.t.

Tu(-) = (w, ).
Define a map A: H — H by taking u as input and returning w as output, i.e.
B(u,-) = (Au, ).

2. Ae L(H).
Let uy,us € H and ¢ € R, then

(A(cuy + u2), ) = B(cu + ug,-) = cB(uy, ) + B(ua, -) = (cAuy, ) + (Aug, ) = (cAus + Aug, ),
therefore A is linear. For any u € H s.t. Au # 0 (Au = 0 is trivially bounded), we have
| Aull” = (Au, Au) = B(u, Au) < a|lu] || Aul],

divided by [|Au||, we have ||Au|| < a||ul|, thus A is bounded.
3. A is injective.
For any v € H,
Bllul® < Blu,u) = (Au,u) < || Au]| - [lul],
assume u # 0, then

Bllull < [[Au]l,

which is also true for u = 0, thus is true for all w € H. For any uy,us € H with u; # ug, we
have
[A(ur — u2)|| > B [lur — uz|| >0,

then Auy # Ausg, i.e. A is injective.
4. Im (A) is closed in H.
Let {y;}5°, € Im(A) be a convergent sequence (i.e. Cauchy) in H, we want to show y :=
lim; 00 y; € Im (A). Since A is injective, for any ¢ > 1, we can find a unique z; € H s.t.
Ax; = y;. By Step 3,
1

0 < [zm — an| < B Az — Azy|
thus {z;}°, is Cauchy. Then there is x € H s.t. x; — x by completeness of H. Moreover,
by the boundedness of A,

[Az —y|| = lim [[A(z — 2;)[| < lim «[lz — 2]} =0,
1— 00 1— 00

therefore Az =y and y € Im (A), i.e. Im (A) is closed.
5. Im (A) = H and hence A is bijective.
Since Im (A) is closed, by Corollary 1.5.9,

H=1Im(A) @Im (A"

17
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If Im (A) € H, Im (A)* # {0}, then there exists u € Im (A)+ \ {0}, then we have
1
lull® < 5B(usu) = (Au,u) =0,

which contradicts u # 0.
4. For any ¢ € H*, by Riesz representation theorem (1.5.3), there is a unique w € H s.t.

To find v € H s.t.
(Au,-) = B(u,-) = ¢(-) = (w, ),

i.e. we need to find u € H s.t. Au = w. Since A : H — H is bijective, there is a unique
solution u = A~ lw. ]

Remark. From Step 2 we have ||A|| < a. From Step 3, for any w € H,
] < G llAG )] = 5 il

thus HA‘1H < 1/B. This implies A~! € £(H). We can also apply the Inverse operator
theorem to show A~! € L(H).

1.6 Banach algebra

Definition 1.6.1. 1. A Banach algebra is a Banach space A equipped with a bilinear map
called product A x A — A: (z,y) — zy s.t. it is
(i) associative, i.e. for any a,b,c € A, (ab)c = a(bc);
(ii) and for any a,b € A, ||ab|| < ||al| - ||]].
2. A Banach algebra is commutative if for any a,b € A, ab = ba.

3. A Banach algebra is unital if there exists a unit 14 € A s.t. forany be A, 14-b=10
and b- 14 =0b.

4. If A is unital, then b € A is called invertible if there is x € A s.t. bx = b = 1 4. x is
called the inverse of b, denoted by b=,

Remark. 1. If they exist, both the unit and the inverse are unique.

2. If A is unital, the set of invertible elements forms a group.

Example 1.6.2. Suppose X is a Banach space. Let £(X) := £(X,X) be the set of endo-
morphisms of X. Then A is a Banach algebra with the product given by composition. £(A)
is also unital because the identity map is the unit.

18



Notes Huarui Zhou MATHG635

Proof. Only need to show (ii). Let a,b € £(X), then

aoblx b(z

sex\{oy  lzllx zeX\{0} ||CC||X
Example 1.6.3. Suppose (2 is a complete metric space. Let C'(£2) be the set of all continuous
functions: Q@ — R. Then C(2) with the supremum norm is a Banach space. And C(Q2) with
the function product is a commutative and unital Banach algebra.

Example 1.6.4. Let
Co(R") ={f € C(R") : lim f(z)=0,}

|z]—00
then Cy(R"™) is a commutative Banach algebra but not unital.

Theorem 1.6.5. Suppose A is a Banach algebra. Then

1. For any a € A,

re = lim [a"|*™
n—oo

exists and rq < ||a||. We call rq the spectral radius of a.
2. If A is unital and a € A satisfies r, < 1, then 1 — a is invertible and
o0
(I —a)” Z a.
k=0

3. If A is unital, let G be the set of all invertible elements in A. Then G forms a group and
is an open subset of A. The function G — G : b— b~ is continuous.

Proof. 1. Since HCL”HH =|la-a™|| < |la] - [[a"|], inductively, we have
[a"|| < la]™, Vn>1.

Then
1
Ja" """ < lall .
Le. {||an||"/"yee ° | is a bounded real sequence and lim,, llam /™

n|t/n

< ||a]| if the limit exists.

Let r = inf,>; ||a , by definition of inf, for any ¢ > 0, there is m € Z s.t.

|

||la <r+e.

For any n € Z, there is k,l > 0 s.t. [ <m and n = km +[. Then

1 Emal1/n k l L l
la™ [V = [k < a7 el < (4 )Fm )

then
r < liminf ||o”(|"" < limsup |||/ = r + ¢,
n—00 n—00
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therefore r = lim, o0 [|a”||"/™.

2.

3. For any a € G, we will show By ,-1)(a) C G, G is therefore open. Let b € By |,-1)(a),
ie. |la—0l <1/ Hail |, and H]l - cfle < |la = || Hcle < 1. Let ¢ = 1 —a'b, we have
re < |le|| < 1, then by (2), a='b =1 — ¢ € G and hence b = a(a~'b) € G, i.e. G is open.
Next, we will show G — G : b+ b~ ! is continuous. It suffice to show for any a € G, it is
continuous at a, i.e. for any ¢ > 0, there is Bs(a) C G s.t. for all b € Bs(a),

ot =Y <.

Let 0 <1/ Ha’lﬂ, then by previous step, b € G, then

la— b [ja”|’

o™ a7 <
1

— lla— bl [la=t]|"
If we let -
|a — b 5
Ja=1]" +ella™

then we have

therefore we find .

—102 —
la= " + & [~

d = min{

1.7 Baire category theorem

Definition 1.7.1. Suppose (X, d) is a metric space.

1. A C X is called nowhere dense if
(A)° = 2.

2. A C X is called meager if it is a countable union of nowhere dense sets.
3. A is called non-meager if it is not meager.
4. A C X is called residual if A¢ is meager.

Remark. 1. If X is non-empty, then & is meager and X is residual.

2. If X = @, then X is both meager and residual.
Lemma 1.7.2. Suppose (X,d) is a metric space.

1. A C X is nowhere dense if and only if A° contains a dense open subset.

2. If BC X is meager and A C B, then A is meager.
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3. If AC X is non-meager and A C B C X, then B is non-meager.
4. Any countable union of meager sets is meager.
5. Any countable intersection of residual sets is residual.

6. A C X is residual if and only if A contains a countable intersection of open subsets of X.

Proof. 1. Suppose A is nowhere dense, using the fact (4)¢ = (A°)° and (A°)¢ = A¢, we have

i.e. (A°)°is dense in X, we are done since (A¢)° is an open set contained in A¢. For the other
direction, suppose A contains a dense open subset B. Since B C (A°)°, X = B C (Ac)°.

2. 3. 4. Clear.

5.

Lemma 1.7.3. Suppose (X,d) is a metric space, TFAE
1. Every residual subset is dense
2. Every non-empty open subset is non-meager

3. If {A;}3°, are subsets of X with A} = &, then

(Ge) -

4. If {U;}32, are dense open subsets of X, then (o=, U; is dense.

Proof. 1 = 2. Let U C X be a non-empty open set. For any xo € U, by definition of
openness, there is 0 > 0 s.t. Bs(xg) C U, then Bs(xo) N U¢ = @, which implies U is not
dense. By statement 1, U¢ is not residual, thus not meager.

2=3

3—=14

4=1 ]

Theorem 1.7.4 (Baire category theorem). Let (X,d) be a complete metric space. Then
1~4in Lemma 1.7.3 hold and

5. Bvery residual subset is non-meager

holds.

Proof. 2=5. Let R C X be residual, then by definition, R¢ is meager. If R is meager too,
then by Lemma 1.7.2, RUR® = X is also meager, however by Statement 2, X is a non-empty
open set and thus non-meager.
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Completeness = 4. Step (1). Let {U;}3°, be a sequence of dense open subsets of X. By
definition of “dense”, we can take zy € X and ¢¢ > 0 s.t.

Bey(z0) N UL # 2. (1.1)
1
Then take x; € B, (zo) N Uy, since Be,(xp) N U; is open, there is 0 < g1 < 3 Ls.t.
B, (z1) C B, (z9) N Uy.

By definition of “dense” again, we have B, (x1) N Us is non-empty, which is also open, thus

1
we can find z9 € Be,(z1) N Uz and e with 0 < &1 < 1 s.t.
Bgz(l‘g) - Bgl(xl) NUy C U NUs.

Inductively, for any k € Z,, we can find x; € X and ¢ € R s.t.

k
1
0<er < gp Belu) C (U, and B (z) C Be(z;) V0<j<k.
j=1

(The choice of the sequence {z;}?°, requires the axiom of dependent choice.)
Step (2). {x;}72, is Cauchy. (why?)
Step (3). By Step (2) and completeness of X, there is xo € X s.t. xp — 2oo. We have
(why?)
Too € Bey(zg) and zoo € Uy, VEk € Z>o.

Therefore
o
Too € (m Uk> ﬂBgo(xo).
k=1
Since xg and g are chosen arbitrarily, we conclude that ﬂzozl U}, is dense. [

1
Hfeq > 3 any ball with radius < &7 also satisfies the following condition.
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Chapter 2

Principles of functional analysis

2.1 Uniform boundedness principle

Definition 2.1.1. Suppose X is a set, {Y;};er is a sequence of normed vector spaces with
the index set I, the function sequence {f;};c; with f; : X — Y is called pointwise bounded
if for any x € X,

sup | fi(@)[ly, < oo.
i€l

Theorem 2.1.2 (Uniform boundedness principle). Suppose X is a Banach space, {Y;}ier
is a sequence of normed vector spaces, A; € L(X,Y;) for each i € I. Suppose {A;}icr is
pointwise bounded, then
sup || 4;]] < oo.
iel
The proof of Theorem 2.1.2 needs the following lemma.
Lemma 2.1.3. Suppose (X,d) is a complete, non-empty metric space. For each i € I,
fi + X = R is continuous. If {f;}7°, is pointwise bounded, then there is xog € X and e > 0
s.1.
sup sup |fi(z)| < oc.
1€l zeB:(x0)

Proof. 1. For any i € I and n € Z., define
Foi={z e X :|fi(z)| <n},
which is a closed set, thus

Fpi= () Fui = {z € X :sup|fi(x)| < n}
icl el

is also closed. For any x € X, by pointwise boundedness, there is N € Z s.t.

sup | fi(z)] < N,
el
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thus ¢ € Fy and then

oo
XclUrmcx,
n=1

ie. X =U,—, Fu

2. Since X is non-empty, X is residual, then by Baire category theorem (1.7.4) and com-
pleteness, X is non-meager. By the definition of “non-meager”, not all F}, is nowhere dense.
Suppose Fy, is not a nowhere dense set, since F), is closed,

@ # (Fm)° = (Fn)*,

which means F),, contains a non-empty open set. Then there is xg € F},, and g9 > 0 s.t.
Be,(x0) C F,,. Therefore, for any = € B, (z9),

sup | fi(z)] < m,

el
then change the order of two sup, we have

sup sup |fi(z)|= sup sup|fi(z)| <m < . N
1€l z€Bc(z0) x€Bc(x0) €I

Proof of Theorem 2.1.2. Step 1. For each i € I, define f; : X — R by fi(z) = [|Ai()]]y,,
Vo € X. Then f; is continuous since A; and the norm are both continuous. Since {A;};cs is
pointwise bounded, {f;};cs is also pointwise bounded. By Lemma 2.1.3, there is xp € X and
€ >0 s.t.

M :=sup sup |[Ai(z)|ly, =sup sup |fi(x)] < oco.
1€l z€B.(x0) 1€l z€B:(x0)

Step 2. Let w € X with ||w||x =1, then

1 3 €
l4dw)lly, = 2 [[Altao + Sw) = (20— ||

1 € 1 €

< = hd z _Z

< o sl 2 a5l

<M M

e ¢ X

thus ||4;]] <2M /e for all i € I. ]

Example 2.1.4. If a real sequence a := {a, }°; satisfies
{anmn}?zozl €
for all {x,}72 | € co, then a € £*°.
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Proof. Define ¢ : ¢cg — cg by
{zntnz = {anzn iy,
then ¢ € L(cg, o). Define ¢y, : cg — co by
{mn}%OZI = (Cbll’l, 5, AGmTm, 07 07 e )

Definition 2.1.5. Suppose X,Y are normed vector spaces and {A4;}7°, C L(X,Y). {4;}3°,
is said to converge strongly to A € £(X,Y) if for any x € X,

Az = lim A;x.

1—00
Theorem 2.1.6 (Banach-Steinhaus). Suppose X,Y are Banach spaces and {A;}3°, C L(X,Y).
TFAE

1. For any x € X, {A;x}32, is a convergent sequence.

2. sup;>q [|[Ai|| < oo and there is a dense subset D C X s.t. for any x € D, {Aw}2, is
Cauchy.

3. sup;> [|Ail| < oo and there is A € L(X,Y) s.t. A; — A strongly and

[A[] < Tim inf || Ay} .
1—00

Proof. 1 = 3. Suppose for any x € X, {A;x}5°, is convergent, then {||A;x[|y }:2, is bounded,
i.e. {A4;}9°, is pointwise bounded, then by the Uniform boundedness principle,

sup ||Ai]| < oo.
i>1

Define Az = lim;_,~ A;x, then by the continuity of ||-||,

lAzlly = lim [[Aiz]ly = liminf||Awlly < liminf|Af] - [lo]lx < sup [l - flz]lx .
i—00 1—00 i—00 i>1

i.e. Ais bounded. And A is also linear, thus A € £L(X,Y), A; — A strongly and
[A]l < lim inf || A;] .
1—00

2= 1. Fix z € X, we want to show {A4;2}:°, is Cauchy in Y. Since D is dense in X, there
is {z3}72, € D s.t. x;; — x. Notice that
|Amr — AanY = [[Ap (2 — x) — Ap(z — 2p) + Ay — Anxk”Y
< (A = An) (@ = zp)lly + [[Amzy — Anwlly
< Am = Anll |z =zl x + | Amzr = Apzilly
< (1Amll + [[An[D) [l = 2l x + [[Amzr = Anzilly
< 2(sup [[Aill) [l = zillx + | Amze = Anzilly -
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Since xp — z, for any € > 0, there is Ny € Z s.t. for all k£ > Nj, we have

€
4(5111%'21 HAz'H)'

Then choose a k > N, since {A;z;}7°, is Cauchy, there is Ny € Z; s.t. for all m,n > No,

[ =kl x <

£
||Am$k — Anxk“Y < 5
Therefore ||Apx — Apz|ly <e, ie. {A;x}2, is Cauchy and hence convergent. ]

Corollary 2.1.7 (Bilinear map). Suppose X,Y, Z are Banach spaces and B : X XY — Z is
a bilinear map. TFAFE

1. B is bounded, i.e. there is ¢ > 0 s.t.

1Bz y)llz < clzllxllylly, VeeXyeY.

2. B 1s continuous.

3. For any v € X, B(x,") : Y — Z is continuous, and for any y € Y, B(-,y) : X — Z is
continuous.

Proof. 1 = 2. Locally Lipschitz.

2 = 3. (Clear.

3 = 1. Assume (3) holds. For any y € Y, define F, : X — Z by F,(-) = B(-,y). For any
xz € X, define G, : Y — Z by G,(-) = B(z,-). Since G, is continuous, there exist ¢; > 0 s.t.

1G22 < ey -

Let I ={y €Y : |y|ly =1}, then for any z € X,

sup || Fy ()] ; = sup || B(x, y)ll z = sup [Ga(y)]l 7 < co < 00,
yel yel yel

applying Uniform boundedness principle (2.1.2), we have

c:=sup||Fyl| < oo.
yel

Then for all y € I,
IF,@)l, < cllzly, VoeX.

Foranyx € X,y eY,

1B(z,y)llz = llylly B ) < cllzlix lylly - D

I —
lylly
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2.2 Open mapping theorem
Definition 2.2.1. Suppose (X,dx) and (Y,dy) are two metric spaces. f: X — Y is called
open if for any open set U C X, f(U) is open in Y.

Theorem 2.2.2 (open mapping theorem). Suppose X and Y are Banach spaces. Let A €
L(X,Y) be surjective, then A is open.

We need two lemmas to prove Theorem 2.2.2.

Lemma 2.2.3. Suppose X and Y are Banach spaces. Let A € L(X,Y) be surjective, then
there 1s 6 > 0 s.t.
By (0) € A[BF (0)].

Proof. Step 0. For any subset W of a vector space and A € R, define the scaled set as

MW i={y:ye W}

Step 1. Then
X =] BY0) =] nBF0)
n=1 n=1

Surjectivity of A implies

Y =AX)=A (U an%0)> = |J AlnB*(0)] = | nA[B{(0)).

n=1 n=1 n=1

Step 2. Since Y is residual and complete, Baire category theorem (1.7.4) implies Y is non-
meager. Then there is ng € Zy s.t. ngA[B;X(0)] is not nowhere dense, i.e.

(roABTO)]) # 2.

scaling the set, we have
1

(5 <o>]>o ‘o

Then there is yp € Y and 6 > 0 s.t.

B () € (GABYO)) € 3ABYO))

Step 3. BY (0) C A[B{¥(0)].
Fix y € BY (0) i.e. |ly|ly <§. Then

w0+ € BY () € SAIBEO), 0 € SAIBX(0)]
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1
~B{¥(0) s.t.

By the definition of closure, there exist sequences {z;}32;, {2;}5°, C 5

T = y+yo, T = Yo
Since ||z} — il < ||lzillx + [|z}llx <1, ie. 2} —2; € B{¥(0), we have
Ala} — ;) € A[BT (0)],
then
y = lim A(x; — ;) € A[B;%(0)].

1—00

The lemma is now proved. [

Lemma 2.2.4. Suppose X and Y are Banach spaces and A € L(X,Y). If
BY(0) C A[B¥(0)] for some 6 > 0,

then
Bj (0) C A[B{(0)].

Proof. Step 1. For any y € Y,

(5y —
€ By (0) € A[B(0)],
lylly
thus
v € AlBjy, /50
Step 2. Let y € BY(0), then y € A[B{ iyl /6(0)], by the definition of closure!, let ¢ :=
5~ llylly >0, there is zo € BY, 5(0) (ie. lleolly < [lully /9) s.t.
£
Iy - Asolly < £,

ie. y— Axg € B;//Q(O), rescale the vector, we have

d(y — Axo)

2 € BY(0).

Repeat the previous procedure, there is 71 € BiX(0), s.t.

dy—A . o

Y

rescale the vector, we have

y — Axg —Agﬂ

2 =ty - Avo — Anlly <

9
4’

f ¢ € S, then for any r > 0, there is s € S, s.t. d(x,s) < r.
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€
25 ! and lz1] x < %

Step 3. Suppose we have found {:cj}é‘?zo C X s.t.

where 21 =

€ . €
y—AZHZ‘] < W, with HiL’]HX < 5@ (21)
Then
6281y — A Ko
( Z]_O ]) c Bg(()),
€
so there is 1411 € B{¥(0) s.t.
k
62k+1(y_AZj:0:vj) - - §
- k+1 27
Y
then
i ET i €
k+1 o )
y_Azmj_52k+1 - y—AZ$]—$k+1 <2k+2’
j=0 v J=0 %

where zj1 = zgk% and ||zgp1] x < 52k+1 Therefore (2.1) holds for all k € Z..

Step 4. Let k — oo, we have
o
y=A Z r; = Ax*
j=0

where we let % = 37°° j2;. Since

[0.9] o oo
" [yl HyH o — lyll
el = | S| <D sl = ool Nyl < 1442 § jzj - Wy 0= Wy oy,
=0 |y =0 =1
we have z* € B;* (0) and hence y € A[B{% (0)]. O]

Next, we will prove the Open mapping theorem 2.2.2.

Proof of theorem 2.2.2. Suppose A € L(X,Y) and A is surjective, then from Lemma 2.2.3
and 2.2.4, there is § > 0 s.t.

B3 (0) € A[B{* (0)].

Let U C X be an open set, we want to show A(U) is also open. For any yg € A(U), there is
xo € U s.t. yo = Axg. Since U is open, there is ¢ > 0 s.t. Bs(zg) C U.
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Claim. BY(yo) C A(U).
Let y € BY(yo), then

Then there is 21 € BiX (0) s.t.

Apy = YW
€

Y

i.e. y=cAr) +yo = A(xg + ex1), where xg + ex1 € BX(29). Now the claim is proved. Then
for any element in A(U), we can find an open ball around that element and contained in
A(U), i.e. A(U) is open. [
Corollary 2.2.5. Let XY be Banach spaces, A € L(X,Y) be surjective. Let 6 > 0 s.t.
BY (0) C A[B{*(0)]. Then for anyy €Y,

. ylly
f < .
pertf el < =5

Proof. Fix y e Y. For any C € Rs.t. C > |ly|ly- /6, we have

lylly
—= <90
c =7
then y/C € BY (0), by the hypothesis,
Y
G € A[BX(0)].
Then there is & € B;* (0) s.t.
LAY
C

Let x = C%, y = Az and ||z y = ¢ ||Z| x < C. We complete the proof since C'is arbitrary. [

Corollary 2.2.6 (Inverse operator). Let X,Y be Banach spaces, A € L(X,Y) be bijective.
Then A is invertible.

Proof. Bijectivity implies A~! exists, We need to show A~! is linear and continuous.
A~1is linear: for any u,v € Y and ¢ € R,

A eu+v) = A7 HeAA T u + AAT ] = A7 A(eA u + A7) = cA a4 A7,

A7l Y — X is continuous: for any open set U € X, by the Open mapping theorem (2.2.2),
(A~H~YU) = A(U) is also open. Thus A~! is continuous. O

Corollary 2.2.7. Let X be a Banach space, X1, Xs be closed subspaces of X s.t.
X =X ® Xo.
Then there is ¢ > 0 s.t. for any x1,x2 € X,
2]l + llz2ll < cflzr + 2 -
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Proof. X1 and X5 are both Banach spaces, easy to check X; x Xs is also Banach w.r.t. the
product norm defined by

1z, )l = ol + [le2ll, V(z1,22) € X1 x Xo.

Define A : X1 x X9 — X by A((x1,22)) = x1 +x2, V(x1,22) € X1 X Xo. A is clearly linear and
bounded. Moreover A is bijective: (i) A is injective, because 0 can be uniquely expressed,
hence 0 = 21 + x2 with x; € X1, 22 € X3 has the only solution z; = z9 =0, i.e. Ker A = {0}.
(ii) A is surjective because every element in X can be expressed as z = 1 + x9 with x; € X
and 19 € Xo.

Therefore A~! is also bounded by Corollary 2.2.6. By definition of boundedness, there is
¢ >0, s.t. for any x € X, we have

[A™ || < cllall,

let x = x1 + 22 with 21 € X1, 29 € X, then ||z1]| + [|z2]| < ¢l|z1 + 22| O]

2.3 Closed graph theorem

Definition 2.3.1. Suppose X, Y are Banach spaces and U is a subspaceof X. Let A: U — Y
be linear (not necessarily be bounded), and write dom(A) = U.

1. Define the product norm on X x Y by
Izl = llzllx +llylly,  V(zy) e X xY.
Easy to check (X x Y, ||-||) is Banach.
2. We say A is closed if its graph
'g:={(zr,Az) :x € dom(A)} C X xY
is closed (w.r.t. the topology induced by the product norm).
3. I'4 induces a norm on dom(A) called the graph norm, defined by
oy, = llzllx + 1 Azlly, Ve € dom(A).
Then (dom(A), ||-[|,) is a normed vector space.

Remark. 1. {(zx,yx)};2, is a Cauchy sequence in X x Y if and only if {z;}7°, is Cauchy
in X and {y}32, is Cauchy in Y.

2. If we endow dom(A) with the graph norm, then A : (dom(A), [|-[[,) — Y is bounded.
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Theorem 2.3.2 (Closed graph theorem). Let X,Y be Banach spaces, A: X —Y be linear.
Then A is bounded if and only if T 4 is closed in X x Y.

Proof. =: Suppose A € L(X,Y). For any convergent sequence {(z,, Azyp)}>>; CI'4, let its
limit be (oo, Yoo) € X X Y. We want to show (2o, Yoo) € T'4, 1.€. Yoo = AToo. Easy to check
Ty — Too and Ax, — yso. Since A is bounded hence continuous, we have

Yoo = lim Az, = A(lim z,) = Ars.
n—00 n—o00

<—=: Suppose 'y is closed. Then I'4 is Banach w.r.t. the product norm. Define the
projection map 7 : 'y — X by (x, Az) — z. Easy to check 7 is bijective and bounded, thus
by Corollary 2.2.6, 7! is bounded. Then there is ¢ > 0, s.t.

Izl x + | Azlly = [[(z, A2)|| = [|77 (2)[| < cllzllx

therefore | Az|ly < (¢ —1) ||z| x, take ¢ = max{c—1,0} > 0, then [|Az|y < |||y, i.e. Ais
bounded. []

Corollary 2.3.3 (Hellinger—Toeplitz theorem). Let H be a R-Hilbert space. Let A: H — H
be linear and symmetric i.e. (Ax,y) = (x, Ay) for any x,y € H. Then A is bounded.

Proof. By Theorem 2.3.2, it suffices to show I'4 is closed in H x H. Suppose {(zn, Az,)}>°; C

n=1 =
[ 4 converges t0 (Zoo, Yoo ), We want to show yo, = Azs. For any z € H, since A is symmetric,

we have
(AToo, 2) = (Too, Az) = lim (2, A2) = lim (Axy, 2) = (Yoo, 2),
n—o0 n—oo
then (A%Too — Yoo, 2) = 0. Let 2 = Axoo — Yoo, We have Az = Yoo- ]

Definition 2.3.4 (Closeable operator). Suppose X,Y are Banach spaces, let dom(A) C X
be a subspace and A : dom(A) — Y be linear. A is called closeable if there is a closed linear
operator A : dom(A) =Y s.t.

dom(A) C dom(A), /~l|dom(A) = A.

Remark. The extension A is closed, thus it is continuous by Theorem 2.3.2.

Lemma 2.3.5. Suppose X,Y are Banach spaces, let dom(A) C X be a subspace and A :
dom(A) — Y be linear. TFAE:

1. A is closeable

2. The projection mx : T4 — X is injective

3. Suppose there is a sequence {x,}>°; C dom(A) andy €Y s.t.
lim z, =0, lim Az, =y,
n—»00 n—00

then y = 0.
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Proof. 1 = 3. Since A is continuous, we have

y = lim Az, = lim Az, = A(lim z,) = A0 = 0.

n—oo n—oo n—oo

3 = 2. First, I'4 is a subspace of X since the closure of a subspace is still a subspace
(addition and multiplication are continuous). Second, consider the kernel of 7,

Ker (1) = {(z,y) €T : 2 =0}.

For any (x,y) € I'4 with 2 = 0, there is a sequence (z;, Az;) € T4 s.t. (2, Ax;) — (0,y), i.e.
z; — 0 and Az; — y. From 2 we have y = 0, therefore Ker (r) = {(0,0)} and hence 7 is
injective.

2= 1.

2.4 Hahn-Banach theorem

Definition 2.4.1. Suppose X is a real vector space. A function p : X — R is called a
quasi-semi-norm (g-s-norm) if for any z,y € X

1. p(Ax) = Ap(z), VA € [0, 00)
2. p(z +y) < p(z) +py).
A function p: X — R is called a semi-norm if it is a g-s-norm satisfying
p(Ax) = [Alp(v), VAeR.

Remark. A g-s-norm is not necessarily non-negative, but a semi-norm is always non-negative
since for any = € X, 2p(z) = p(z) + p(—x) > p(0) = 0.

Theorem 2.4.2 (Hahn-Banach). Suppose X is a vector space and p : X — R is a g-s-norm.
If there is a subspace Y C X and a linear map ¢ : Y — R s.1.

o(y) <ply), Vyey,
then there is a linear map ¢ : X = R s.t. ¥y =¢ onY and
b(x) <p(z), VoeX.

Lemma 2.4.3. Suppose X is a vector space and p : X — R is a g-s-norm. If there is a
proper subspace Y C X and a linear map ¢ : Y — R s.t.

o(y) <ply), Vyey,
then for any xo € X \ 'Y, there is a linear map 1 : Y @ Span(zg) = R s.t. ¢|y = ¢ and
Y(z) <p(r), VreY @ Span(w).
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Proof. 1f such v exists, for any y + Azg € Y @ Span(zg) where y € Y, A € R,

Uy + Azo) = (y) + Mb(zo) = d(y) + Mb(z0),
therefore 1 is determined by ¥ (zg). Our goal is to find suitable ¢(x¢) s.t.

o(y) + M(xo) = Y(y + A\xg) < ply + Azg), VyeY,AeR. (2.2)

Easy to check (2.2) is equivalent to

o(y) +¥(xo) < ply +x0) and  é(y) — ¥(zo) < ply —x0), Yy €Y,
i.e.
d(y) — ply — x0) < Y(x0) < ply +x0) — Py), VyeY.
For any y1,y2 € Y, we have

(y1) + ¢(y2) = ¢(y1 + y2)

p(y1 + y2)

p(y1 — w0 + y2 + x0)
p(

IN

< p(yr — o) + p(y2 + o),
thus
o(y1) — p(yr — o) < ply2 +x0) — ¢(y2), Vyr,y2 €Y.
Let
CVZ%ydw—p@—xwL ¢2 = f[p(y +0) = &(y)];
we have ¢ < g, so we can always choose ¢ € [c1, c2] and let ¥ (zg) = c. H

Proof of Theorem 2.4.2. Define the set

P={(ZY):YCZCX;¢:Z—Rislinear s.t. p =1

yo ¥(2) Sp(2), V2 € Z}
Define a partial order < on P by (Z,v) <X (Z',¢') if

zcz, v=v,
Let C' C P be a chain, define (Z¢,v¢) by

Zo= |J 2 vc=v@), Veez with (Z4)eC.
(Zy)eC
Then (Zc,ve) € P and for any (Z,¢) € C, we have (Z,¢) X (Zc,ve), ie. (Zo,ve) is
an upper bound for the chain C. By Zorn’s lemma (A.1.3), there is a maximal element

(Zm,¥m) € P, i.e. there is no other element m’ € P s.t. m' # m and m < m’.
Claim: Z,, = X.
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Otherwise, assume Z,, C X, by Lemma 2.4.3, there is 29 € X\ Z,,, and ¢ : Z,,,®Span(zg) — R
s.t. (Zm @ Span(zg),v) € P and

(Zm, ¥vm) = (Zm © Span(xg), 1),

which contradicts (Z,,,,¥,) is a maximal element. N

Corollary 2.4.4. Let X be a normed vector space, Y C X be a subspace. If ¢ € Y*, then
there is ¢ € X* s.t. Y|y = ¢ and ||[¢] = ||¢]].

Proof. Let p(x) = ||¢|| - ||z||. Then p is a norm, and
¢(x) < o) < |9l - [lz]l = p(x), Ve eY.
By Hahn-Banach theorem, there is a linear map ¢ : X — R s.t. 9|y = ¢ and
P(x) <plx) = ol - =], VveeX.

thus |[Y(z)] < ||| - ||=]|, Vo € X, which implies ¢ is bounded and ||¢|| < ||¢||. Since

N T ) S 0 S
sev\io} [zl zevvpoy 2l 7~ zexviop izl
we conclude that [|¢] = [|¢]]. N

Corollary 2.4.5. Let X be a normed vector space, for any xo € X \ {0}, there is ¢ € X*
s.t. |[0|| =1 and ¥(xg) = ||xo|-

Proof. Let Y = Span(zg). Define ¢ : Y — R by
o(x) = B(two) = t o, Vo =tag € Y.

Easy to check ¢ € Y*, ¢(x0) = ||zo]| and ||¢|| = 1. By Corollary 2.4.4, there is ¢ € X* s.t.
Yly = ¢ and ||| = [|¢[| = 1. Since zg € Y, ¢(z0) = ¢(x0) = [|zol| 0

Corollary 2.4.6. Let X be a normed vector space, then X* separate points on X, i.e. for
any z,y € X with x # y, there is ¢ € X*, s.t. ¢(x) # d(y).

Proof. Let x,y € X with x # y. Then x — y # 0, by Corollary 2.4.5, there is ) € X* s.t.

V() —Y(y) = v(r —y) = ||z —y|| #0. O

2.5 Separation of convex sets

In this section, we will introduce another important application of Hahn-Banach theorem.
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Theorem 2.5.1 (Separation of convex sets). Let X be a real normed vector space, A, B be
non-empty, disjoint convex subsets of X with B® # &. Then there is A € X*\ {0} and c € R
s.t.

Ala) <c < A(b), VYae Abe B,

and
Ala) <c < A(b), VYae Abe B°.

Before proving Theorem 2.5.1, we will introduce some definitions and lemmas.

Lemma 2.5.2. Let X be a normed vector space, u,v € X, ri,79 >0, a,b > 0. Then
aBy, (u) + 0By, (v) = Bgy, +br, (au + bv).
Proof. 1. For any x € aBy,(u) + bB,,(v), x = axy + bxy where z1,29 € X s.t.
|lx1 —ul| <71, |lzg —v]| < ro.

Therefore
|z — (au+ b)|| < a|x; —ul| +b||xe — v|| < ar; + bro,
i.e. € By, tpr, (au + bv).

2. For any x € By, b, (au + bv), let x = au + bv + y, where ||y|| < ary + bra. Then we can
write x as

n arq bt bro
r=au+ —— v ———.
ar1 + brgy ari + bT‘Qy
Since
+—1 Syl <
U+ —m—y—ul| = —— r
ary + brgy ary + bro Y b
we have
ut—L yeB (u)
ari + brgy e
Similarly,
+—2 € By, (v)
v
ary + brgy r2As
therefore x € aBy,(u) + bBy,(v). ]

Lemma 2.5.3. Suppose X is a normed vector space and A C X is convex. Then
1. A° and A are convex.
2. If A° #+ @, then A C A°.

Proof. 1. For any u,v € A°, there are open balls B:(u), B:(v) € A°. By convexity of A, for
any t € [0, 1],
tB:(u) + (1 —t)B:(v) C A.
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On the other hand, by Lemma 2.5.2,
tBe(u) 4+ (1 —t)B:(v) = Be(tu + (1 — t)v),
which is open, thus
tBs(u) 4+ (1 —t)B:(v) C A°,

in particular, tu + (1 —t)v € A°, i.e. A° is convex.
Next, we will show A is convex. For any u,v € A, there is sequences {u;}2°;, {vi}32; C A s.t.

Uy — U, vV; — .
Let t € [0,1], since A is convex, for each i,

tu; + (1 — t)UZ' €A,
then

tu+ (1 —t)v = lim [tu; + (1 — t)v;] € A.
1—00

2. Fix zg € A°, since A° is open, there is B.(z9) C A°. For any 2 € A and t € (0,1), since A

is convex,
tr + (1 —t)B:(z9) C A.

Moreover, by Lemma 2.5.2, tx + (1 — ) B:(20) = B (tx + (1 — t)z0) is open, thus
te + (1 —t)B:(zg) C A°.

Define

U:= | [tz + (1= t)Be(ao)],
0<t<1

then U, C A°. And we can choose {y,}>°,; C U, s.t. y, — z, for example, let
1 Zo

—(1-=
Un = ( n)x—l-n

which implies z € U, C A°. O

Lemma 2.5.4. Suppose X is a normed vector space and A C X is convex s.t. A° # &. If
there is A € X*\ {0} and c € R s.t.

Ax)>¢, Vre A®

then
A(z) >¢, VreA,

and
Az) >¢c, Vre A
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Proof. From Lemma 2.5.3, A C A°, thus for any = € A, there is a sequence {z;}22, C A° s.t.
x; — . By the continuity of A,

A(x) = lim A(z;) > c.

1—00
For the second statement, let + € A°. We can find zg € X s.t. A(xg) = 1, for example,
choose y € X \ {0} s.t. Ay # 0, let g = y/||Ay||. Since A° is open, there is an open ball
J
Bs(z) C A° with § > 0. And then = — % € Bs(z) C A° because

oxq ) )
Therefore
) 0 )
Alx) = Az — 53:0) + §A(3:0) > c+ 3> ¢ N

Definition 2.5.5 (Minkowski function). Suppose X is a real normed vector space and A C X
is convex s.t. 0 € A. Define the Minkowski function py : X — [0, 0] by

pa(x) =inf{t > 0: % € A}, VreX.

Define inf @ = .

Remark. 1. p4(0) = 0.

2. Ifx € A, pa(x) <1 because 1 € {t >0:x/t € A}.

3. fx & A, pa(x) > 1. Assume py(z) < 1, there is § > 0 s.t. pa(x) < § < 1, and by the
definition of inf, ¢ is no longer a lower bounded, i.e. there is t5 > 0 s.t. {5 < d < 1 and
x/ty € A. Since A is convex, 0,z /tg € A, we have

$=(1—t0)-0+to-t£€A.
0

Lemma 2.5.6. p4 defined above is a g-s-norm, i.e. for any x,y € A and X € |0, 00),
L pa(Az) = Apa(x)
2. pa(x +y) < palz) + paly).
Proof. 1. The case A =0 is clear. Assume A > 0, by definition,
. Ax ) t x
paAz) =inf{t >0: — € A} =inf{\- (5) > 0: — € A} = \pa(x).

/ \ £/

2. For any t,s > 0 s.t. t > pa(x),s > pa(y), we have

x Yy
pA(?) < 1a PA(;) < 17
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then z/t,y/s € A. Since A is convex, we have

T+y t x S Y
st sttt syt s
then
oA <1, e palzty) < s+t

s+t’
For any € > 0, let t = pa(x) + ¢, s = pa(y) + ¢, then

pa(z +y) < pa(r) +paly) + 2,

since ¢ is arbitrary, we have
pa(x +y) < pa(x) + paly).

Proof of Theorem 2.5.1. 1. Let A, B C X be non-empty disjoint convex subsets and B° # &.

Let M=A—-—B°:={a—b:a€ Abe B°}.
2. Claim: M is convex.

Let x,y € M, i.e. x =ay — b1,y = ag — by for some aj,as € A and by, by € B°. Then for any

t €0,1],

tr+ (1 -ty = [tar + (1 — t)as] — [thy + (1 — t)bo] € A — B° = M,

because A and B° are convex by Lemma 2.5.3.

3. M is non-empty since A and B° are non-empty, then we can choose zg € M. Let
My =M —{zo}, then 0 € My and M is also convex. Thus we can define Minkowski function
on My. Let p = ppr, : X — [0,00] be the Minkowski function. Since AN B° =@, 0 ¢ M,

then —X0 Qé Mo, thus p(—xo) > 1.
4. Let Eg = Span(zg). Define fy € Ej by

fo(szg) = —s, VseR.

In particular, fo(xg) = —1.
5. Claim: For any z € Ep, fo(x) < p(z).
For any s <0, apply p(—zp) > 1 and Lemma 2.5.6, we have
Jol(szo) = —s < —sp(—z0) = p(szo)
For any s > 0,
fo(sxg) = —s < 0 < p(sxg),

because p is always non-negative.

6. Since p is a g-s-norm, by Step 5 and Hahn-Banach theorem, there is f € X* s.t.

f\EO = fo, f(z)<p(x) VrelX.
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In particular, for any x € My, f(z) < p(x) < 1. And f(zg) = fo(xo) = —1. For any = € M,
xr —xg € My, thus

f(z) = f(x —x0) + f(z0) = f(x —29) — 1 <0.
7. Therefore, for any a € A,b € B°, a — b € M, then

fla) = f(b) = fla—1) <0,

ie. f(a) < f(b). Let

e =sup fla). e = inf f(b)
acA be B°

then ¢; < ¢g, choose ¢ € [c1, ¢2], we have

fla) <c< f(b), Vae Abe B°.
8. From Lemma 2.5.4,

fla) <ec< f(b), Vae Abe B,

and
fla) <ec< f(b), Vae Abe B°.

2.6 Dual space and annihilator

Definition 2.6.1. Suppose X be a normed vector space, for any S C X, define the annihi-
lator of S to be
St ={peX*:pa)=0Vae S}

Remark. 1. ST is a subspace of X* no matter whether S is a subspace of X.
2. S+ is always closed. Suppose {on}e, C S+ is convergent in X*, i.e. there is ¢ € X* s.t.
¢n — ¢. Then for any =z € X,

(02| = |¢nx — px[ + [dna| < ¢ — 0| - Izl x =0,

thus ¢ € S+, and S+ is closed.
3. Since X* is always Banach (Theorem 1.4.1), any closed subspace of Banach space is also
Banach, so S+ is Banach.

Theorem 2.6.2. Suppose X is a normed vector space and Y C X is a subspace. Then for
any v € X\ Y,
d(zo,Y) := inf - >0
(20,Y) Jnf lzo — yllx

and there is ¢ € Y+ s.t.
ol =1, ¢(zo) = d(z0,Y).
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Proof. 1. Assume d(zg,Y’) = 0, by the definition of inf, there is a sequence {y,}7°; C Y s.t.

1
d 3 < —,
(xo yn) n

thus y,, — o, which implies zg € Y, a contradiction!
2. Let 0 :=d(x0,Y) > 0. we want to find such ¢. Denote Z =Y & Span(zy), define ¢ € Z*
by (txg) = dt, ¥t € R, and ¢(y) =0, Yy € Y. Then

[ (y + txo)|
[l = sup
yevieer\foy 1y + tzoll
olt|
= sup
yevier\{o} [[Y + tzoll
= sup 0
yeveer\{o} 1Y/t + zol|
=sup ———-  (let ¢ = —y/t)
y'ey on - y/H
B )
infy ey [lzo — /|
0
—_——
)

By Corollary 2.4.4, there is ¢ € X* s.t.
ol = vl =1, o[, =
Moreover, ¢(xq) = ¢(xg) = J, and for any y € Y, ¢(y) = (y) =0, i.e. p € Y+, O

Corollary 2.6.3. Suppose X is a normed vector space and 'Y C X is a subspace. Let x € X,
then x €Y if and only if
o(x) =0, VYpeYs

Proof. If x € Y, then there is a sequence {y,}°°; C Y s.t. y, — x. For any ¢ € Y, by the
continuity of ¢,

¢(x) = nh%r{olo ¢(yn) =0.
On the other hand, if 2 ¢ Y, by Theorem 2.6.2, there is ¢ € Y1, s.t. ¢(z) > 0. ]

Corollary 2.6.4. Suppose X is a normed vector space and Y C X is a subspace. Then'Y is
dense in X, i.e. Y = X if and only if Y+ = {0}.

Proof. By Corollary 2.6.3, X =Y if and only if for any € X and any ¢ € Y+,
¢(x) =0,
which implies ¢ = 0, i.e. Y+ = {0}. O
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Corollary 2.6.5. Suppose X is a normed vector space andY C X is a subspace. Then
1. The map [¢] — ¢|y : X* /YL = Y* is an isometric isomorphism.

2. IfY is a closed subspace and w : X — X /Y is the canonical projection defined by v — x+Y,
then the map ¢ — ¢pom: (X/Y)* = YL is an isometric isomorphism.

2.7 Reflexive space

Definition 2.7.1. Suppose X is a normed vector space. Denote the double dual of X as
X* = (X*)*. And define tx : X — X** by

ix(2)(6) = 6(z), Vre X, pe X"
Lemma 2.7.2. 1x : X — X™ defined above is an isometric embedding.

Proof. First, for any = € X,
ex (@) ()] _ ()] 19| x-

tx ()| 5w = sup sup ——— < sup
sex\{0} ol x- sex\(0} 19llx- = gex-\qop ¢

= [lzllx -

| x+
Second, by Corollary 2.4.5, for any x € X, there is ¢ € X* s.t.

[6llx- =1, o(x) = ||lzf x -
Then

2]l x = ¢(x) = ex(2)() < [lex (@)l xen @l x» = lex (@)l x-- -
Therefore ||z|| y = |[ex (2)]] x- ]
Remark. ¢y is injective since an isometric embedding is always injective.
Definition 2.7.3. A normed vector space X is called reflexive if ¢ x is bijective.

Remark. 1. If X is reflexive, then X is Banach since X** is always Banach.
2. To show X is reflexive, since ¢x is always injective, we only need to show ¢x is surjective.

Theorem 2.7.4. Suppose X is Banach, the following holds
1. X is reflexive if and only if X* is reflexive.
2. If X is reflexive and Y is a closed subspace, then both'Y and X /Y are reflexive.

Proof. 1. =. Suppose X is reflexive, we want to show ¢x- : X* — X*** is surjective. Let
A e X we want to find ¢ € X* s.t. tx+(¢) =A. Let ¢ = Aorx € X*.

X 2.8 s XOFF
\ lA

d=AovLx
R
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Claim: tx+(¢) = A.
For any f € X** since X is reflexive by assumption, we have ¢x is bijective, thus there is
vy € X st ux(xp) = f. Then

ix-(0)(f) = F(8) = (A oux) = 1x(ep)(Aoix) = Aoux(as) = Ao f.

The claim is proved and hence X* is reflexive.

<. Suppose X* is reflexive, we want to show tx : X — X** is surjective. Since rx is
isometric by Lemma 2.7.2, tx(X) is a closed subspace of X**. Let ¢ € 1x(X)+ C X**,
since X* is reflexive by the assumption, there is ¢ € X* s.t. ¢ = 1x+(¢). For any a € X,
tx(a) € tx(X), then

0=19(ex(a)) = tx+(9)(tx(a)) = tx(a)(d) = ¢(a),

ie. ¢ =0, and then 1) = 1x-(¢) = 0, thus tx(X)*+ = {0}. By Corollary 2.6.4 and ¢x(X) is
closed, we have

ex(X) = ex (X) = X,
therefore 1x is surjective.

2. Assume X is reflexive and Y C X is closed. First, we want to show Y is reflexive,
i.e. 1ty : Y — Y™ is surjective. Define the restriction map r : X* — Y* by

r(6) = 9|y, Vo e X",
Then for any ¢ € Y** ¢por € X**.

X "Ly
\ lw
por

R

Since X is reflexive i.e. 1x : X — X** is bijective, there is z, € X, s.t.

vx(zy) =1por.
Claim: =y €Y.
Let f € Y+ C X*, then
flay) = x(zy)(f) = or(f) =0,
because f € Y implies r(f) = fly = 0. By Corollary 2.6.3 and Y is closed, , € Y=Y.

We have shown for any ¢ € Y**, there is x € Y s.t. tx(xy) = 1. Left to show vy (xy) = 4.
For any g € Y*, by Corollary 2.4.4, there is h € X* s.t.

g=h|y=roh.
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Then
vy (wy)(9) = g(xy) = h(zy) = tx(xy)(h) =Y or(h) =1(g),

therefore 1y (zy) = ¥, i.e. 1y is surjective and hence Y is reflexive.

Second, we want to show X/Y is reflexive, i.e. 1y is surjective. Let 7 : X — X/YV
be the canonical projection, i.e. m(x) = [z] =z +Y for any 2 € X. Define T': (X/Y)* — X*
by T(f) = fom, for any f € (X/Y)*.

X 15 X)Y
le
R

In fact, ImT C Y+ because for any y € Y, n(y) = [y] = 0, thus for any f € (X/Y)*,
T(f)(y) = fom(y) = 0. Moreover, by Theorem 2.6.5, T : (X/Y)* — Y is an isometric
isomorphism.

Fix ¢ € (X/Y)™, we want to find zy € X/Y s.t. tx,y(xy) = ¥. Notice that ¢ o T-1 ¢
(Y+)* € X** then by Corollary 2.4.4, there is ¢ € X** s.t.

YoT ™' =¢|,.,

ie. for any g € Y1,

Yo T H(g) = ¢lg),
and for any f € (X/Y)*, Tf € Y, thus

b(f) = o T HTf) = o(Tf) =o(f o).

Since X is reflexive, there is x € X s.t. 1x(x) = ¢. Let zy = 7(x).
Claim: Lx/y<xw) = Q/}
For any f € (X/Y)*,
vx vy (@) (f) = f(xy)
= f(m(z))
— fon(x)
= x(z)(fom)
=¢(fom)
= ¥(f).
The claim is proved and therefore 1x /v is surjective. [l

Example 2.7.5. Every finite-dimensional normed vector space is reflexive.

Example 2.7.6. Every hilbert space is reflexive.
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Example 2.7.7. LP is reflexive for any 1 < p < oo.

Example 2.7.8. ¢y is not reflexive.

2.8 Separable space

Definition 2.8.1. A normed vector space is separable if it has a countable dense subset.
Example 2.8.2. R" is separable.

Lemma 2.8.3. A normed vector space is separable if and only if it has a countable set
{ej}52, s.t. the set of finite linear combination of {e;}32,, i.e.

n

Zajej ca; € RneZy
j=1

is dense.

Theorem 2.8.4. Suppose X is a normed vector space. Then
(1) If X* is separable, then X is separable.

(2) If X is reflexive and separable, then X* is separable.

Proof. Claim: (1) implies (2).
Assume (1) holds and assume X is reflexive and separable. By reflexivity, X** has the same
topology as X, thus X** is also separable. By (1), X* is separable.

Left to show (1). Assume X* is separable. Let {¢;}32; C X* be dense. Denote the unit

sphere in X by S1(X), and let {b;}32; C S1(X) s.t.
1
9;(bj) = 5 llojll -
Define

n
Y = Zyjbj:ijR,n€Z+ ,
j=1
by Lemma 2.8.3, it suffices to show Y is dense in X.

Claim: Y is dense.
From Corollary 2.6.4, Y is dense if and only if Y = {0}. Let ¢ € Y* C X*. Since {¢;}72,
is dense, there is {¢;, }7°, s.t. ¢;, — ¥, i.e.

16 — &l = 0.
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Then
[l < N dj — LIl + N Dl

< |’¢]k - 7/’” + 2¢jk(bjk>

= |éj, — VIl + 2(dj, — ¢)(bj,) (since ¥ € YT)

< ”(bjk - iﬁH +2 H¢]k - w” HbijX

=3¢, — ¥l

— 0,
thus ¢ = 0. [l
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Chapter 3

Weak and weak™ topologies

3.1 Weak topology

Motivation

The fewer open sets a topology has, the easier it is for sequences to converge. To facilitate
convergence, we will introduce a topology that is coarser than the norm topology.

However, we want this new topology to preserve important properties, such as the con-
tinuity of continuous functions. Specifically, we aim to construct the smallest, or weakest,
topology on X such that every linear functional that is continuous with respect to the norm
topology remains continuous with respect to this new topology. In other words, for any
¢ € X* and any open interval (¢(zg) — &, ¢(x) +¢) C R, we want the set

¢~ ((¢(x0) — &, ¢(wo) +¢)) = {z € X : |p(x) — d(z0)| < e}

to be open in the new topology. We will call these sets "new open” sets.
Recall that a topology is closed under finite intersections, meaning the new topology must
include every finite intersection of these "new open” sets. This gives us the sets

N(zo,e,01,02,...,0n) ={z € X : [¢1(x) — ¢1(z0)| <&,...,|[dn(2) — N (T0)| < £}
N
= m{x e X: |¢Z(I) — ¢Z(x0)| < 6}7
i=1

where xg € X, € > 0, and ¢1, p2,...,0n € X*. Let

B = {N(zo,&,¢1,02,...,6N) : w0 € X, > 0,01,¢p2,...,65 € X}

be the basis for this topology.

Thus, the weakest topology that ensures the continuity of every ¢ € X* must contain
the basis B. Let U"“ denote the topology generated by B. By construction, 4"V is the
smallest topology containing B and, therefore, the weakest topology that makes every ¢ € X*
continuous.

47



Notes Huarui Zhou MATHG635

Definition 3.1.1. Suppose X is a normed vector space.
1. For any zp € X, define a weak neighborhood around zg by
N(zo,A,e) ={z € X : [¢(x) — ¢(x0)| <&,Y9 € A},
where A C X* is finite and € > 0.

2. The weak topology U™ on X is the topology generated by the basis (analog of the open
ball in the metric topology) N(zg,e, A) where g € X, e > 0 and A C X* is finite. In
other words, we say U C X is weakly open if for any p € U, there is a finite set A C X*
and € > 0 s.t. N(p,e,A) CU.

3. We say {z,}2°; C X converges to zo € X weakly if x,, converges to zo in U", denoted
by Tn — Zoo.

Remark. 1. UV is the weakest topology on X to make every ¢ € X* continuous.

2. Let U be the norm topology on X. For any zp € X, € > 0 and finite A C X*, N(xg,¢, A)
is open in U because ¢ € A C X* is continuous in U and the finite intersection of open sets
is still open in U.

3. From Remark 2, UV C U, Then

e Open in UV implies open in U
e Closed in UV implies closed in U
o Convergent in U/ implies convergent in U¥.

Lemma 3.1.2. z, < x4 if and only if for any ¢ € X*,

Definition 3.1.3 (Convex hull). Suppose V is a vector space, A C V. Define the convex

hull of A by
COHV(A) = {Ztiai 1t > O,Zti =1l,a;, € An¢€ Z+}
i=1 =1

Lemma 3.1.4. Suppose K is a convex set and n > 2. Then for any vy, - ,v, € K and any
t1, oty with t; >0 and Y. t; =1, we have

n
Z tiv; € K.
=1

Proof. We will prove inductively. The case n = 2 is true by definition. Assume the statement
is true for n—1, i.e. for any vy,--- ,v,—1 € K and any t1,--- ,t,—1 with ¢; > 0 and Z?;ll ti=1,

we have
n—1
Z tiv; € K.
=1
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Then for any v1,--- ,v, € K and any ty,--- ,t, with ¢; > 0 and Z?:l t; =1, then

n—1 n—1

Y ti=1—tn, Zlft =1,
n

=1 i=1

by the assumption, we have

n—1 )
)
€ K.
11— tnvl c
=1
Therefore

n n—1 ‘

i= i=

Lemma 3.1.5. Conv(A) is the smallest convex set that contains A, i.e. Conv(A) is convex
and for any conver set K C X s.t. AC K, we have

Conv(A) C K.

Proof. 1. For any u =Y 7", tja;,v =Y ;- ta; € Conv(A) (we can assume m = n, otherwise,

if m <n,wecanlett, ,=---=t,=0)and any ¢t € [0, 1],

n

tut (1=t =t tia;+ (1 =) tia; =Y [tt;+ (1 - t)tjla; € Conv(A)
=1

1=1 1=1

because
n n

n
S+ (-t =ty ti+(1-1)> ti=t+(1—1t)=1,
i=1 i=1 i=1

Therefore Conv(A) is convex.

2. Moreover, suppose K C X is convex and A C K. For any u = Z?:l tia; € Conv(A), from
Lemma 3.1.4 we have u € K. ]

Theorem 3.1.6 (Mazur). Suppose X is normed vector space. If there is a sequence
{zn}o0, C X and o € X s.t. Y oo, thent

norm

Too € Conv({zy}r2 )

norm

Proof. Let K := Conv({z,}5°,) . Then K is clearly closed, and K is also convex by
Lemma 2.5.3. Suppose o, ¢ K. Then xo € K¢ and K€ is open, thus there is an non-empty
open ball B:(z+) C K¢ which is also convex. By Theorem 2.5.1, there is A € X* and c € R
s.t. for any k € K and z € B:(7),

A(k) < ¢ < Ax).

1The superscript “norm” means the closure is in the norm topology.
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Then there is § > 0 s.t.
ANz — Too)| = AM2ao) — Alzj) > AM2sg) —€ >0 >0, Vje€Zy,

then
lim [A(zj — 2o0)| >0 > 0,

J—00
which contradicts
Azj) = Mzoo),
thus x; does not converge to zo, weakly. [

Corollary 3.1.7. Suppose X is a normed vector space and K C X 1is convex. Then K is
closed in U if and only if it is closed in UY.

Proof. If K is closed in UV, then K is also closed in U, since closed in UV always implies
closed in Y. Conversely, if K is closed in U, suppose there is {z,}°°; C K and 2, € X s.t.
Ty~ Too, then by Mazur’s theorem (3.1.6) and Lemma 3.1.5,

norm ——=norm

Too € Conv({xn}5o ) CK =K,

i.e. K is closed in UV.

Another proof without using Mazur’s theorem. First, any closed half space H = {x €
X : A(z) > ¢} is weakly closed, because A is also continuous in UV, and then

H=A1(c,0)) eU™.
Second, by the Corollary ?7,

K = ﬂ{closed half spaces H containing K'}

= ﬂ{weakly closed half spaces H containing K},

then K is also weakly closed since any intersection of closed sets is also closed. []

We will show a fun fact about the weak topology.

Lemma 3.1.8. Suppose X is a normed vector space with dim(X) = oo and ¢1,- - , ¢ € X*.
Then
n
dim (ﬂ Ker(gbi)) = 00,
i=1

and hence (., Ker (¢;) # 2.
Proof. . ]
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Theorem 3.1.9. Suppose X is an infinite-dimensional normed vector space. Then the weak
closure of the unit sphere is the closed unit ball.

Proof. 1. Since the closed unit ball By := {z € X : ||z|| < 1} is convex, by Corollary 3.1.7,
—=—norm = -

we have B; = B; = Bi . Then the unit sphere S; C By = By, thus 51 C B; " = Bj.
2. Tt suffices to show B; € Sy . For any zo € By, let U be a weakly open set containing o,
then there exists

N(zo,e,A) ={z € X :|¢j(x) — ¢j(x0)| <e,Vo; € A} CU

for some ¢ > 0 and A = {¢1,--- ,¢n} € X*. From Lemma 3.1.8, Ker (¢;) \ {0} # @ and we
can choose y € ﬂé\leKer (¢5)\ {0}

3. Claim: there is t; € R s.t. |lzg + t1y| = 1.

Let f(t) = [lzo + tyl, then f(0) = ao|l < 1, and

F@) = llzo + tyll = [¢[ [yl = llzoll

so let to = (2 + ||zol|)/ ||y||, we have f(tg) > 2. Since f is continuous and 1 € [f(0), f(¢o)], by
the intermediate value theorem, there is ¢; € (0, %) s.t.

f(ty) = llzo + tayl =1,

ie. xo+tiy € 57.
4. On the other hand, since y is in the kernel of ¢;, we have ¢;(zo + t1y) = ¢;(zo) for each
j=1,---,N, thus

6;(z0 + t1y) — ¢j(x0)| =0 <e, Vj=1,--- N,

i.e. zg +t1y € N(zo,e, A). Then zg +t1y € Sy N N(xg,e,A) C Sy NU. Since U is arbitrary?,
we have zp € 57 . ]

Definition 3.1.10. Suppose X is a real normed vector space and E C X*, then the set
LE ={zeX:¢(x)=0,Y¢ € E}
is called the pre-annihilator of E.

Lemma 3.1.11. Let E C X*, then ~E is closed in X.

Proof. Suppose {7,}%2; C +E converges to 2, then for any ¢ € E,

O(Too) = ¢( lim z,) = lim ¢(xy) =0,

n—oo n—oo

SO Zoo € TE. m

2Recall that in the general topology, = € S if and only if every neighborhood of & contains a point of S.

51



Notes Huarui Zhou MATHG635

Theorem 3.1.12 (weak closure of a subspace). Suppose X is a normed vector space and
E C X is a subspace.

(1) E=YFELH=E".
(2) E is closed if and only if it is weakly closed if and only if E = +(E1).
(3) E is dense if and only if E is weakly dense if and only if E+ = {0}.

Theorem 3.1.13 (Eberlein-Shmulyan). A Banach space is reflexive if and only if every
bounded sequence has a weakly convergent subsequence.

Proof. “=" is more interesting, we will only prove this direction.

Step 1. Let X be reflexive, and {z,}7°; € X be bounded, we want to show it has a weakly
convergent subsequence. Let Y = Span({x,}), then Y is a separable, reflexive Banach space.
By Theorem 2.8.4, Y* is also separable, then Y* has a countable dense subset, denote it to
be {;}72;.-

Step 2. By the diagonalization method, we can find a subsequence {74, }p2 C {zn}l; s:t.
{0i(T5(n)) fnzy converges for all i > 1.

Step 3. Consider the sequence {ix(7q(n))}nz; € X™*, which converges pointwise for every
element of the dense set {¢;}72,, then by Theorem 2.1.6, {tx (z,(n))}p2; converges strongly
in Y** to some element A € Y**. Since X is reflexive, there is 2o € X s.t. A = 1x(2c0).
Therefore for every ¢ € X*,

i.e. {Zy(n)tne1 € {7n}ne; Weakly convergent. O

3.2 Weak* topology

Definition 3.2.1. The weak* topology on X* is the weakest topology on X* s.t. every
element of 1x(X) C X** is continuous.

Example 3.2.2. Let X be a normed vector space. Then ¢ : X — X** is continuous w.r.t.
the weak topology on X and the weak* topology on (X*)*.

Proof. For any open set O C U™ (X*), we want to show :~1(0) € U¥(X). Consider the base

N={}

Theorem 3.2.3 (Alaoglu). Suppose X is a separable normed vector space. Then every
bounded sequence in X* has a w*-convergent subsequence.
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Proof. Since X is separable, there is {xj};’il C X s.t. it is countable and dense in X. Let
{01132, € X* be a bounded sequence, i.e.

sgpl\cbkl\ < .
Then for any j € Z,
Sp |or ()] < sup 1@k]] - ;] < o0,

i.e. for each j € Zy, {¢r(xj)};2,; € R is bounded. For j = 1, since {¢p(21)}32, € R is
bounded we can find a subsequence

{bor (i)} SH{Pr} Rz

8.6 { Qg (k) (r1)}72, converges. Since {dq,(1)(r2)}72; € R is bounded, we can find a subse-
quence

{gbaz(k)} - {¢G1(k)}io:1
8.6, { @y (k) (12)}72, converges. Iteratively, we can construct a subsequence

{00, } S {0,y (k) ot

s.t. {@g,; () (5) 132, converges. Therefore the subsequence {¢,,;)}72; satisfies {¢,, ;) (i)}52,
converges for every i > 1. By Banach-Steinhaus Theorem (2.1.6), {¢,,(;)(x)}32; converges
for all z > X, i.e. {¢,(;)}j2, 18 w*-convergent. []

Theorem 3.2.4 (weak* closure of a subspace). Suppose X is a normed vector space and
E C X* is a subspace.

(1) E=L+EH=FE".
(2) E is closed if and only if it is weak® closed if and only if E = - (E1).
(3) E is dense if and only if E is weak* dense if and only if E+ = {0}.
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Chapter 4

Dual operator and compact operator

4.1 Dual operator

Definition 4.1.1. Let X, Y be normed vector spaces and A : X — Y. Define A* : Y* — X*
by
A*p=¢o A, VopeY™.

Lemma 4.1.2. Suppose X,Y are normed vector spaces and A € L(X,Y), B € L(Y,Z). Then
1. A* € L(Y*, X*) and ||A*]| = || A]|.

2. (BA)* = A*B*, and 1% = 1x-

3. A% € L(X™,Y™) and A o1y = 1y o A.

Proof. 1. We have

* A* *
sev\{0r ol
— sup swp 1 [A%(z)]
sev-\(0} zex (o} 19lly- [zl x
e e oA
sev=\{0} zex\{o} 19lly~ [zl x
R
vex\{0} 1Zllx gev=\goy  l9lly-
ey (Az) |y -
sex\ioy  7lx
[ Az||y

sex\{oy I17llx
= [|A|| < oc.
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2. Since BA € L(X, Z), (BA)* € L(Z*,X™). For any ¢ € Z*,
(BA)(¢) = ¢ o (BA) = (po B)o A= B*(¢) 0o A= A"(B*(¢)) = A"B*(¢9).
3. Forany xr € X, p € Y*,

[A™ o ux ()](9) = [A™ (ex (2)))(¢) = 1x(x) 0 A™(¢)
= 1x(2)(A°¢) = (A"9)(z) = ¢(Ax) = 1y 0 A(2)](¢).
]

Example 4.1.3. Let X,Y be a Hilbert space. Let A € £(X,Y). AT € L(Y, X) is called the
adjoint operator of A if it satisfies

(v, Au) = (Atv,u), VYue X,veY.
fX=Y=H, Ae L(H), R: H— H* is the Riesz representation isometry, then
At=R'oA*o R,
Lemma 4.1.4. Let X,Y be real Hilbert spaces and A € L(X,Y), then
A = |Ataj.
Proof. By the definition of adjoint operator, we have

|AlI* = sup [ Azlly = sup (Az,Ax)

[l x=1 llzll x=1

= sup (ATAz,z)

]l x=1

< sup HT]LTa:HX =] x

llll x=1
= 77
< [T 171
= |IT*.

]
Theorem 4.1.5 (Duality). Suppose X,Y are normed vector spaces and A € L(X,Y), then:
(1) Im (A)*+ = Ker (4*) and +Im (A*) = Ker (A).
(2) Im (A) is dense in'Y if and only if A* is injective.
(3) A is injective if and only if A* has a w*-dense image.
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Proof. (1) Notice that

Im (At ={peY*:p(Ab) =0, Vb e X}

={peY*: (A"p)(b) =0, Vbe X}

={peY": A" =0}

= Ker (4%),
and

Lm (A*) ={z € X : A*¢(x) =0, Vo € Y*}

={re X :¢(Az) =0, Vo € Y}

={z e X :1y(Az)(¢) =0, Vo € Y™}

={r e X :1y(Azx) =0}

={re X:Ax =0}

= Ker (A).
(2)A* is injective if and only if {0} = Ker (4*) = Im (A)* if and only if Im (A) = Y by
Corollary 2.6.4.
(3) O

Theorem 4.1.6 (Closed image theorem). Suppose X,Y are Banach and A € L(X,Y). TFAE
(1) Im (A) =+ Ker (A*)

(2) Im (A) is closed in'Y

(3) There is ¢ > 0 s.t. for any w € X,

Iwlll x jker (4) < ¢l Az]ly -

4) Im (A*) = Ker (A)*+

5

—

m (A*) is w*-closed in X*.

(4)
(5)
(6) Im (A*) is closed in X*
(7) There is ¢ > 0 s.t. for any ¢ € Y,

[l jxer (a) < [ A™D - -

Proof. (1)==(2). By Lemma 3.1.11.
(2)=(3) O

Corollary 4.1.7. Suppose X,Y are Banach spaces, A € L(X,Y). Then
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(1) A is surjective if and only if A* is injective with a closed image, i.e. there is ¢ > 0 s.t.
for any ¢ € Y,

9]

v+ < c||A%

X

(2) A* is surjective if and only if A is injective with a closed image i.e. there is ¢ > 0 s.t.
for any x € X,
2]l x < el Azfly -

Corollary 4.1.8. Suppose X,Y are Banach spaces, A € L(X,Y). Then
(1) A is bijective if and only if A* is bijective.
(2) If A* is bijective, then (A*)~! = (A~1H)*

(3) A is an isometry if and only if A* is an isometry.

4.2 Compact operator

Definition 4.2.1. Suppose X,Y are Banach, K € £(X,Y). K is

1. compact if for any bounded subset S C X, K(S) is compact.

2. completely continuous if the image of every weakly convergent sequence in X is norm
convergent in Y

3. finite-rank if dim Im (K) < co.
Lemma 4.2.2. Suppose X,Y are Banach and K € L(X,Y). TFAE
(1) K is compact
(2) m is compact
(3) If {xn}o2; is bounded, then {Kxzy,}° | has a convergent subsequence.
Lemma 4.2.3. Suppose X,Y are Banach, K € L(X,Y).
(1) If K is compact, then K is completely continuous.

(2) If X is reflezive and K is completely continuous, then K is compact.

Proof. (1) Step 1. Let {z,}5°; be weakly convergent.
Claim: {z,}°; is bounded.

By the definition of weakly convergence, for any ¢ € X*,

{ex(@n)(0)}ntr = {@(2n) i
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is convergent and hence bounded, i.e. {ix(z,)}2; € X** is pointwise bounded. By the
Uniformly bounded principle (2.1.2), there is ¢ > 0 s.t.

sup [lz, || = sup [lex (zn) || <,
n n

ie. {,}o2 is bounded.
Step 2. Since K is compact and {zy, }>° is bounded, {Kz,}>° ; has a convergent subsequence
{K 2, (n)fneq Which converges to yoo € Y.
Claim: Kz, = Yoo.
Suppose {Kz,}2°, does not converge to yso, there is ¢ > 0 s.t. for all N € Z,, there is
n > N s.t.

||K~Tn - yoo“ > €,

so there is a new subsequence { Kz, () }pe; s.t.

1K) = || 2 &

{Toy(n) by 1 weakly convergent thus bounded, then there is a convergent subsequence

{Kxag(n)}%o:l C {Kxog(n)}%ozla

8.t K%y (n) = 200 € Y and 200 # Yoo By Corollary 2.4.6, there is ¢ € Y™ s.t.
Y(Yoo) # P (200)-

However, let z be the weak limit of {z,}7° ;, then

7vb(yoo) = nh—golo w(me(n)) = nh—>n<}o K*w(xm(n)) = KW(Ioo)a

similarly,
V(200) = KY(20),
which contradicts ¢(yoo) # ¥(200)-

(2) Assume X is reflexive and K is completely continuous. Let {z,}5°; € X be a bounded
sequence, then by Theorem 3.1.13, there is a weakly convergent subsequence

{Zom) tnz1 S {zntnZa

By the definition of “completely continuous”, {K xa(n)};’f’:l is convergent, so K is compact.

n
Example 4.2.4. Suppose X,Y are Banach, K € £(X,Y) is finite-rank, then K is compact.
Example 4.2.5. Consider the space L?(S'), any function f € L?(S') can be spanned in this

way: ‘
ft) =Y fre™,
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where f}, € C. Define the norm ||-|| ;> and [|-|| 5, by

1l = f2m 7 1l
kEZ

d 2
I, = \/ I+ |

Let Hy = {f € L2(SY), s.t. ||flly, < 00}

and

= [ S+ )l

L? kez

Proposition. The inclusion map ¢ : H; — L?(S') is compact.

Proof. Let {f™}>°, C Hy s.t. it is bounded, i.e. there is M > 0 s.t.

2
n

i.e. for any n > 1,

S A+ EfEP < M.

keZ

Then {f]}72,; € C is bounded for every k € Z. By Bolzano-Weierstrass theorem, there is
a subsequence { 70"} C {f"}> C Hj sit. {fgo(”)}jfbo:l C C converges. Inductively, we
can find subsequences

{70y S Ly C e C{M L € Hy,
s.t. { f;k () 10, € € converges for all |j| < k. We can then pass to the diagonal subsequence

{f""(”)},‘fle to get
{7y,

converges for all j € 7Z.
Claim: {j“”’f(”)};;o:1 converges in L2(S1).
It suffices to show it is Cauchy. Given ¢ > 0, we want to find N s.t. for any I,m > N,

|

Notice that there is kg > 1 s.t. for all |k| > ko,

< e

L2

fcrl(l) B fcrm(m) ’

AM <52
14 k2 2
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Then
2 2
‘ fcn(l) i fam(m)‘ _ f m (m)
L2
€7
o) pom(m ‘ (m)‘2 2
<2 1+k
> 4T Z fk fk 1—|—/€0 Z ( + )
k: |k <ko k:|k[>ko
oi(l) om(m) 2 ‘ ou(l am(m)’2
<2 -
> 2T Z fk; fk + 1—1—/{0 f —f "
ez | k| <Ko
all)  pomm)|?, 4AM
DN TR
ez || < o
2 2
< o(l)  pom(m) €
< 27 Z I I + 5
x| k| <Ko

Since {fg"( o0 | converges for all k € Z, there is N > 1 s.t. for all [, m > N and |k| < ko,

2

o Z ‘f,fl(l) B f]gm(m)r . %,

ez || <o

Theorem 4.2.6. Suppose X,Y,Z are Banach, A € L(X,Y), B € L(Y,Z).

therefore )

fold) _ fam<m>‘
I

< &2,

(1) If A or B is compact, then Bo A is compact.
(2) K(X,Y) is a closed subspace of L(X,Y)
(3) Ae K(X,Y) if and only if A* € K(Y™*, X™).

Proof. (1) Clear
(2) Step 1. Let {K;}32; C K(X,Y)s.

K U ke cix, v,

we want to show K is compact. Let {z,}>2; C X be a bounded sequence, say ||z,| < M
for all n, our goal is to show {Ko(xy)}>2, has a convergent subsequence.
Step 2. Since K is compact, {x,}5°; is bounded, we can find a subsequence

{xal (n) }?:1 C {xn}?zozl
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s.t. {Kiz,, (n)}%":l converges, iteratively, we can find subsequences

{xak(n)}?zozl - {xakq(n)}%ozl c---C {xm(n)}%o:l - {xn}fzozl

s.t. {KjTg, (n)}ney converges for all j < k. Therefore, we find a subsequence

{Zo,m tnz1 € {ntni

s.t. {K;Z,, (n)}pe1 converges for all j > 1.
Step 3. Now we want to show { Kooz, ()} converges, i.e. it is Cauchy.
Let € > 0, we want to find N > 0 s.t.

|Kooxan(n) — Kooxam(m)| <eg, ‘v’m,n > N.

Since Kj = K in norm, there is Ny > 0 s.t.

€ .
K — Kool < e Vi > Ny.

Choose jy = Np, then

’Kooxan(n) - Kooxam(m)‘ = ’(KOO - Kjo)(xan(n) - xam(m)> + Kjo (xan(n) - xam(m)>’
< |(KOO - Kjo)(xan(n) - xam(m)” + |Kjo (xan(n) - xam(m))|
<N Koo = Ko |l - |20n ) = Zom) || + 1Ko (T (n) = Tor(m))]

£
< m - 2M + |Kj0(xan(n) - xam(m)”

£
= 5 + |Kjo<xan(n) - xam(m)”-
Since {Kjj, 74, (n) 71 converges, hence is Cauchy, there is N > 0 s.t.

£
|Kj0<xan(n) - $0m(m)>| < 9 Vm,n > N,

thus
|Kooxgn(n) — Kooxgm(m)| <eg, Vm, n > N.

Therefore, K is compact and K(X,Y") is closed.

(3) We only prove A € K(X,Y) = A* € K(Y*, X*). The other direction is similar.

Step 1. Let A € K(X,Y), then A(B1(0)) is a compact subset of Y, denoted as M, which is
a compact metric space. For ¢ € Y*, define f, : M — R by f4 = ¢|;,. Define

F={fs€CM): |6lly. <1} € C(M).
For any ¢ € Y*,
| Follcary = sup e € X+ |lally < 16(Ax) =supz € X : [Jal|x < 14°0(x) = [|A"Gllx . ()
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Step 2. F is a bounded subset of C'(M).
For f4 € F,

IFolleqn = sup 1)

= sup [¢(Ax)]
zeX:||z||<1

< sup |ofly- - [[A} - flzllx
zeX:|lz) <1

<Al (since [|¢]

y- <land [jz|| <1)

Step 3. F is pre-compact in C'(M).
By Arzela—Ascoli theorem A.2.3, it suffices to show F is equi-continuous. For any y1,y2 € M
and fy € F,

|fo(y1) — foly2)l = lo(y1) — o(y2)| < 1@lly~ lyr — v2lly < llyr — v2lly

therefore F is equi-continuous and hence pre-compact.

Step 4. Finally, A* is compact.

We will show A*(BY™(0)) is pre-compact. Let {¢,}>2, C BY"(0), ie. |onlly- < 1, so
{fo.}o2; € F. Since F is pre-compact, by Theorem A.2.1, it has a convergent subsequence

{f%(n)};’;’:l. Then by (%),

A" G m) = A" bo(m) || o = [ fonem — f¢a<n>HC(M)’

ie. {A%bom)tnzs € A*(BY7(0)) is Cauchy and thus convergent. By Theorem A.2.1 again,
A*(BY7(0)) is pre-compact, therefore A* is compact. N
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Chapter 5

Spectral theory

5.1 Spectrum

Definition 5.1.1. Let X be Banach, A € £(X). Define the spectrum of A by
g(A) ={X € C: A1 — A is not bijective} = P,(A) UC,(A) L R,(A),
where P, is the point spectrum,
P, :={A € c(A): A\l — A is not injective},
C, is the continuous spectrum
Cy :={A€0(A): Al — A is injective and Im (A1 — A) is dense in X},
R, is the residual spectrum
R, :={A € c(A): A1 — A is injective and Im (A1 — A) is not dense in X}.
Define the resolvent set of A by
p(A) =c(A) ={X € C: A\l — A is bijective}.
Example 5.1.2 (Spectrum of left-shift operator). Let X = (2, define A € L(¢?) by
A(xy, 29, ) = (22,23,--+), V(r1,22,--) € X.

For any (21,22, ), (y1,y2,---) € X, we have

(Alz1, @2, ), (Y1, 92, )) = z2y1 + a3y + -+ = (1,22, ), (0,91, 92, -+ ),

SO
AT(yLyQ? o ) = (07y17y27 te )

Claim: o(A) = o(A) = B1(0).
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Proof. Let A € B1(0)\ {0}, then (\,A\%,---) € X because

oo

n2 __ |)‘|2
Z’)\‘ _1_|)\‘2<OO

n=1

And observe that
A(/\,/\Q’...) — ()\27/\37_,.) :)\(A’)\Q’._.)7

which implies A is an eigenvalue, i.e. A € B1(0) \ {0} C P,(A). And
A(1,0,0,---) =0,

so 0 € P,(A) and hence B;1(0) C P,(A).

Suppose A € Py(A) N B{(0), then there is v = (vy,v2,---) € X s.t.

<U27U37"') :>\<U1,’02,“‘),
i.e. v9 = A\vi,v3 = Avg, - -+, and we have
n—1

Up = A" g,

i.e.
U= (Ula )\Ulv >\2'U17 e )7

however
0 00
Z |/\n—1U1|2 _ |Ul|2 Z ’)\|2(n—1)
n=1 n=1

is not convergent because |A| > 1. Therefore B1(0) \ {0} = @, thus P,(A) = B1(0).

Consider other spectrum, let A € o(A) \ P,(A). Then (A1 — A) is injective. If Im (A1 — A) is
closed, then Im (A — A) is Banach. Since (A1 — A) : X — Im (A1 — A) is bijective, by the
inverse operator theorem (2.2.6), there is ¢ > 0 s.t. for any v € X,

[o]l < e |[AL = Al (*)

Suppose A € S, choose € > 0, consider the sequence (v, vs,---) € X where

A .
Uj:<1+5)J'
We have
00 o] A 2 )\2 2 0
IOL = Al = oy — v P =D [hy T2 = |1|+EQZ| vil® = o 2|I ol
j=1 j=1
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then (x) implies
2 2 2 e 2
[0 < e IAL = Af|" = arep [l

SO

22

L
~ (1+¢e)%
but since ¢ is arbitrary, if we choose £ = 1/¢, then

22 1

Tre? Q1o "

which leads to a contradiction! So for any A € S, Im (Al — A) is not closed, hence
Im (Al — A) € X, and S' C o(A).
For any A € S', is Im (A1 — A) dense in X? Notice that
X =Im(\1 —A)@Ker (A —A)") =Im (A1 — 4) & Ker (A1 — AT).

If v = (v1,v9,---) € Ker (A1 — A'), we have

0= (Xll — AT)(ULUQ, ce) = (XUl,X’UQ — U1, \Ug — Vg, - - - ),
then v; = 0,v3 = 0,---, and hence v = 0. Therefore X = Im (Al — A) and Im (A1 — A) is
dense in X, i.e. S' C C,(A). Now we have shown B;(0) C P,(A) UCy(A).

If Ae Bi(0), ie A>1. Let A€ £(X)st. |A =1,

A

where the spectrum radius r/\ < [[A/A|| <1, thus 1 — A/X is invertible by Theorem 1.6.5
and so is A1 — A, therefore A1 — A is bijective and A ¢ o(A). Together, we have

Py(A) = Bi(0), Cy(A)=S5", R,(A)=a.
Similarly, we can show that
Py(AT) =@, C,(AT)=5', R, (A") = Bi(0). O
Theorem 5.1.3. Let X be Banach, A € L(X).
(1) o(A) is compact in C.
(2) 0(A) = o(AY).

(3) Fo(A") C Pr(A)URs(A), Py(A) C Fr(A") U Ry(A"),
Ro(A*) C Py(A)UC,(A), Ry(A) C Py(AY),
Cp(A%) C Cp(A),  Cnp(A) C Ry(A*) U Cyp(AY).
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(4) If X is reflezive, then Cy(A*) = Cy(A) and Rs(A*) C P,(A).
Proof. (1) If |A| > ||A]|, then

Al _ 14l
A R
by Theorem 1.6.5, we have 1 — A/\ is invertible, thus A1 — A is invertible and hence bijective.

So a(A) C Bj4(0), i.e. o(A) is bounded. It suffices to show o(A) is closed, then by Heine-
Borel theorem, o(A) is compact. We will then show p(A) = o(A)¢ is open. For any A € p(A),
Al — A is invertible. The set of all invertible operators denoted G is open by Theorem 1.6.5,
then there is Bs(AL — A) C G for some § > 0. Let B, = (A +¢)1 — A, where ¢ € C satisfies

0 < |e] <9, then

TA/A < < 1a

[Be = (AL = A)|[ = [len]] = [e] <,

so B, € Bs(A\l — A) C @ is invertible, i.e. A+ ¢ € p(A) for any 0 < |¢| < §, which implies
Bs(A\) € p(A), hence we have shown p(A) is open.

(2) By Corollary 4.1.8; A1 — A is bijective if and only if (AT — A)* = A1 — A* is bijective,
thus p(A) = p(A*) and hence o(A) = o(A*).

(3)We only prove part of these relations.

(i) Prove P,(A*) C P,(A) U R,(A).

First P,(A*) C 0(A) by (2). Let A € P,(A*), then A1 — A* is not injective, by Theorem 4.1.5,
Im (A1 — A) is not dense, thus A ¢ C,(A).

(ii) Prove R,(A*) C Py(A) U C,(A).

Let A € R,(A*), then A1 — A* is injective but has no dense image. By Theorem 4.1.5,
injectivity implies that A1 — A is dense, thus A ¢ R,(A).

(iii) Prove C,(A*) C Cy(A).

Let A € Cy(A*), then A1 — A* is injective and Im (A1 — A*) is dense. By Theorem 3.2.4,
Al — A* is also weak” dense, then by Theorem 4.1.5, A1 — A is injective, thus A\ ¢ P,(A).
Again by Theorem 4.1.5, A1 — A* is injective implies A1 — A has a dense image. Therefore
A€ Cy(A). N

Theorem 5.1.4. Let X be Banach, A € L(A), then o(A) # & and

rqa= sup |A].
A€o (A)

AT\

then 1 — A/\ is invertible by Theorem 1.6.5 and so is A1 — A. Thus A ¢ o(A), then

Proof. If |A| > r4, then
1/n

TA
=<1,
A

sup |A| < 7a.
A€o (A)
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Suppose supyey(4) Al < ra. Then there is € > 0 s.t. for any A € C with [A[ = rq — ¢, we
have \ ¢ o(A), i.e. Al — A is bijective and hence (Al — A)~! < M for some M > 0. By the
holomorphic functional calculus, for any n > 1,

1
At = — AL — A)~Ld),
270 J|N=ra—e
thus
1
A" < o= A [[(AT = A)7H| dA
L H
< |rqa —e|"M O ’
2 Aj=ra—c
< C|TA i g|n+1
and then

A" < e — e,

let n — oo, we have
rASTATE,

i.e. 74 < ry, leading to a contradiction! O

5.2 Spectrum of compact operators

Proposition 5.2.1. Suppose X is an infinite-dimensional Banach space, T € K(X), then
0€a(T).

Proof. Assume 0 ¢ o(T), then T" = —(01 — T') is bijective, and by the Inverse operator
theorem (2.2.6), T-! € L(X), then 1 = T~ ! o T is compact (4.2.6), hence

is compact, which contradicts Theorem 1.2.7. ]
Definition 5.2.2. Let A € £(X), define the eigenspace w.r.t. A by E)(A) := Ker (A — A).
Theorem 5.2.3. Let X be Banach, T € K(X), then for any e > 0,

B B

AEP, (T):|\|>e
is finite-dimensional, i.e. there is a finite number of \; € P,(T) s.t. for each i,
|Ai| > ¢, dimE),(T) < occ.
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Proof. Step 1. Suppose not, then there is a sequence of linearly independent vectors {z;}72,
s.t.
T:L‘j = /\jxj, Vj Z 1,

where \; € P,(T) and |[\j| > e. Let Y, = Span({x1,x2, - ,2x}). Choose y; € Y7 s.t.
lly1|| = 1. By Riesz’s Lemma (1.5.6), there is yo € Y3 s.t. ||y2]| = 1 and

1
ly2 =2l > 5 Vzem.
Iteratively, we can find a sequence {y;}32, € X s.t. ygpt1 € Yit1, |[yp41]/ =1 and

Vz €Y.

1
Iyt — 21 = 3,

Step 2. Claim: {T(g)/\—k)}zo:1 does not contain any Cauchy subsequences.
k

Let y,. = Z?:l a;xj, then

k— k—1
Yk
T()\_k) = apTy + Z Tx; = apxp + — " Za]/\ T = Yk + 2k,
7=1 7=1

for some z; € Y;_1. Then for any n with n < k, we have

Yk Yn
HT@;—Tgy

1
| = Hyk + 2 — (yn‘i‘zn)H = Hyk + (Zk — Yn — Zn)” > 57

because z — ¥ — zn € Yi_1. Thus the claim is proved.
_ el

Step 3. Since
-

}k , is bounded, then by the compactness of T, {T( )}k , must have a convergent
Ak

Yk
Nk

W)IH

Yk
5w
subsequence i.e. a Cauchy subsequence, which is a contradiction! [

Remark. This theorem shows that the point spectrum of a compact operator is at most a
sequence \; converging to 0.

Proposition 5.2.4. Let X be Banach, T € K(X), then Im (A —T) is closed for all X\ # 0.
Proof. For any y € Im (Al — T'), there is x € X s.t. y = (AL — T)z. Let
Zy= (AL =T) " ({y}) = {z € X : AL T)z = y},
then Z, =  + E)\(T). Define
a(y) = inf [|z[].
2€Z,

70



Notes Huarui Zhou MATHG635

Claim: There is C' > 0 s.t.
a(y) <Clyll, VyeIm(AL-T)

Based on the claim, now we can prove this proposition. Let {y,}>°; € Im (A1 — 7)) s.t.

Yn = Yoo € X, we want to show yo € Im (A1 —T'). Since ¥, = Yoo, {yn}re; is bounded, by
the above claim, there is {z,}°°; C X s.t. (Al — Tz, =y, and

sup [|zn|| < C'sup [jyn|| < oo
n n

for some C' > 0, i.e. it is bounded. Then by the compactness of T, there is a subsequence
{Tom)tner S {zntnly st {T2y(m) pney converges, let u € X be the limit. Then

Yoo = li_>m yn = lim (AL —T)ay, = lim (AL = T)z,0,) = A im 2,0, — u,

n—oo n—oo n—oo
SO
. Yoo + U
lim @5, = =T € X,
n—00 A

then by the continuity of A1 — 7', we have

Yoo = lim ()\]1 — T)Jia(n) = (/\I[ — T) lim Jia(n) = (/\I[ — T):L‘OO,

n—oo n—oo

i.e. Yoo € Im (A1 —T). Therefore Im (A1 — T') is closed. N

Corollary 5.2.5. Let X be Banach, T € K(X), then C,(T) C {0}.

Proof. If A € Cy(T) and A # 0, then A1 — T is injective and
Im(Al-T7)=Im(\1-T) =X,
i.e. A1 — T is surjective, thus A1 — T is bijective, a contradiction! [

Definition 5.2.6. Let X,Y be Banach spaces, A € L(X,Y) is called a Fredholm operator,
denoted by A € F(X,Y) if both Ker (A) and Ker (A*) are finite-rank and Im (A) is closed.

Definition 5.2.7. Define the index mapping Ind : F(X,Y) — Z by
Ind(A) := dim Ker (4) — dim Ker (A¥), VA € F(X,Y).
Theorem 5.2.8. Ind is continuous.

Corollary 5.2.9. Ind is locally constant.

Corollary 5.2.10. Let X be Banach, T € K(X) and X\ # 0, then \I — T is injective if and
only if it is surjective.
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Proof. Define f:[0,1] — F(X) by f(s) = Al — sT for all s € [0,1]. Then Indo f:[0,1] — Z
is continuous, thus Ind o f is constant. Since

Ind(f(0)) = dim Ker (A1) — dim Ker ((A1)*) =0—-0 =0,
we have Ind(f(1)) = Ind(f(0)) =0, i.e.
dim Ker (A1 — T') = dim Ker (A1 — 7)*) = dim Coker(A1 — 7') = dimIm (A1 - 7). [
Corollary 5.2.11. If T € K(X), then

o(T) = {0} U Po(T).

5.3 Spectrum of self-adjoint operators

Definition 5.3.1. Suppose H is a Hilbert space, A € L(H) is self-adjoint (s.a.) if
Al = A,
ie. (Ax,y) = (x, Ay) for all z,y € H.
Remark. For any © € H, (Az,z) = (z, Az) = (Az, z), so (Az,z) € R.
Proposition 5.3.2. Suppose H is a Hilbert space, A € L(H) is s.a., then
P,(A) CR.
Proof. Let A\ € P,(A), v € E\(A) \ {0}, then
Mol = (v, v) = (Av,0) = (v, ATv) = (v, Av) = (v, o) = X|Jo]]?,

so A=\, ie. AeR. O
Actually, we have a stronger result (Propostion 5.3.5).

Lemma 5.3.3. Suppose H is a Hilbert space, A € L(H) is s.a. Then Rs(A) = .

Proof. Let A € R,, then A1 — A does not have a dense image, then by Theorem 4.1.5,
(M —A)T = X1—-AT = X1 — A is injective, i.e. A\ € P,(A). By Proposition 5.3.2, A = X € P,(A),
contradiction!. ]

Lemma 5.3.4. Suppose H is a Hilbert space, A € L(H) is s.a. Let A € C, if there is ¢ > 0
s.t.

(A =ADz| = cllzll, VzeH,
then \ ¢ o(A).
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Proof. Let A € 0(A), by Lemma 5.3.3, A € P,(A) U C,(A). The inequality implies A — A1 is
injective and has a closed image. Injectivity means A ¢ P,, then we must have A € C,(A),
i.e. A— A1 has a dense image. However, closed image means A — A1 is surjective and hence
bijective, then A ¢ o(A), contradiction! ]

Proposition 5.3.5. Suppose H is a Hilbert space, A € L(H) is s.a., then
o(A) CR.
Proof. Suppose A = a +ib € o(A) where b # 0. Then for any z € H \ {0},
(A= AD)z,2) = (A= (a+ib))z,z) = (A—a)z,z) +ib||z]?,
where ((A — a)z,z) = (Az,z) — a||z|* € R. Then
(A=A, 2)* = [((A = @), 2)]* + b [l2] ",
by Cauchy-Schwarz,
b2l < (A = ALz, 2)] < |I(A = ALl [l2]]

le.
b |z < [[(A = AL)x]l,
by Lemma 5.3.4, A ¢ o(A), it is a contradiction. ]

Proposition 5.3.6. Suppose H is a Hilbert space, A € L(H) is s.a., A1, 2 € P,(A) s.t.
)\1 75 )\2, then
E)\l (A) 1 E)\2 <A>

Proof. Let v1 € E), (A) \ {0}, v2 € E),(A) \ {0}. Then

A (v1,v2) = (Avy,ve) = (v1, Ava) = (v1, Agva) = Aa(v1, v2) = Aa(v1,v2),

therefore (A1 — A2)(v1,v2) = 0, and hence (v1,v2) = 0. ]
Proposition 5.3.7. Suppose H is a separable Hilbert space, T € L(H) is compact and s.a.
Then
H= @ E\D),
AeP,(T)
and H has a unitary eigenbasis of T, i.e. H has a basis {u;}72, s.t. Tuj = Ajuj, [luj]| =1

for all j, and u; L uy for all j # k.

Proof. Step 1. By definition of ||T'[|, i.e. T = sup,|; [T, there is a sequence {v;}32; s.t.
oyl = 1 and
lim [ To;l| = || T (%)
j—00
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Since {v;}32, is bounded, by Alaoglu’s theorem (3.2.3), there is a subsequence {vy(j)}32,

C
{vj 152 st v (j) Y Voo for some v, € H.
Step 2. Claim: [|v| = 1.
First,

: 2

L= lim {|og)|
— tim g — v+ o
J—00

= Jim_ (el + [[00(5) = voc [* + 2Re ({voe, vy = vsc)))

2
5

= llosoll” + lim vsgg) = vao|

SO ||vesol] < 1.
Second, by v,(j) — Vo, We have Tw,(j) — T, then |[Tv(§)|| — [|[Tvsol|. Also by (%), we
have || Tvs(5)|| = ||T||. Thus ||Tvs|| = ||T||. Then

1T = [[Tvooll < T veoll

SO ||[vso|| > 1. Therefore we have proved the claim. By the above argument, we also find that
T achieves its maximum on v
Step 3.

Corollary 5.3.8. Let Hy, Ha be Hilbert spaces and Hy be separable. Let Fin(Hy, Hy) denote
the (non-closed) subspace of finite-rank operators in L(Hy, Hs), then

Fin(Hy, Hy) = K (Hy, Hy).

5.4 Spectrum of normal operators

Definition 5.4.1. Let H be a Hilbert space. A € L(H) is called
(1) normal if [A, AT := AAT — ATA=0.
(2) unitary if AAT =1 = ATA.
Remark. 1. If A is unitary, then A preserves the norm because
|42l = (Az, Az) = (v, AT Az) = |l2]>
2. A unitary operator is always normal.
Theorem 5.4.2. Let H be a Hilbert space and A € L(H) be normal. Then
(L) [[A™ = [1A]"

74



Notes Huarui Zhou MATHG635

(2) 74 = [|All = supyep(ay Al
(3) Ry(A) = Ry(A") = @ and P,(AH) ={X e C: e P,(A)}.
(4) If A is unitary, then o(A) C S*.
Proof. (1) First,
|Az|? = (Az, Az) = (z, AT Az) = (z, AATz) = (AATz, 2) = (ATz, AT2) = HA%HQ,
and

[ AT Az||* = (AT Az, AT Az) = (AAT Az, Az) = (AT A2, Az) = (Az, ATA%2) = (A2, A%) = || A

moreover,

|Az]|* = (, ATAz) < ||ATAz| 2|l = ||A%| |||,
SO

1A = sup [ Az|® < up. | A% ||zl = ||4%]| .

[l]=1 |

It’s clear that ||A2|| < ||A||, therefore ||A2|| = || A||”. By induction, we have for any & > 0,

k k
||| = nar?

Next, for any n € Z, we can choose m € Z, s.t. 2™ > n. Then

2m — 2m m m_
JAIP" T Al = A = |42 = || a2 mar

[A™[]

so we have

JA]" < 1AM
Since we always have ||A"|| < ||A|", thus [|A]|" = || A"
(2)By Theorem 5.1.4,

sup [Al =74 = lim A = Tim ([|A]")" = A
AEo(A)

(3)Let A € C, then

5.5 Integration

Lemma 5.5.1. Let X be Banach, and c : [a,b] — X be continuous. Then there exists a
unique v € X s.t. for all p € X*,

The v is denoted
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Definition 5.5.2. Let X be Banach, and ¢ : [a,b] — X be continuous. c is called differen-
tiable at t € [a, b] if

lim c(t+h)—c(t)

h—0 h
exists. We denote the limit ¢/(¢). ¢ is called differentiable on [a, ] if it is differentiable for
any t € [a, b].

Proposition 5.5.3 (properties of integration).

Definition 5.5.4. Let Q@ C C be open and X be a C-Banach space. Let f : Q@ — X be
continuous. f is called holomorphic if

: Szt h) - [(2)
f'(z) = lim .

h—0

exists for all z € Q.

Definition 5.5.5. Let v : [a,b] — Q be C!, f: Q — X be continuous, define the integral of

f along the curve v by
frae= [ s

Theorem 5.5.6 (Cauchy integral theorem). Let f be holomorphic in Q C C and BR(zo) Q.
Then

2 Z—w
|z—20|=R

0 otherwise

1 / FIOTE {f(w) if w € Br(z0)

Lemma 5.5.7. Let A: Q C C — L(X,Y) be weakly continuous, meaning @ o A is continuous
for any ¢ € L(X,Y)*. Then TFAE:

(1) A is holomorphic
(2) z — ¢(A(2)z) is holomorphic for any z € Q, x € X and ¢ € Y*.

(3) for any By(z0) C Q, v(t) = 20 +re?™ . [0,1] = Q and any w € By(2), ¢ €Y*, 2 € X,

oA = 5 [ A

Definition 5.5.8. Let X be a complex Banach space, A € L(X). Let U C C be open s.t.

o(A) CU. Let v = {m, -+ ,7m} be a collection of simple piecewise smooth closed curves
where ; : ST — U \ o(A). For any holomorphic function f: U — C, define
1
A)=— 1-A)"tde.
P4 = 5 [ 11— )71

Example 5.5.9.
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5.6 Functional calculus

Definition 5.6.1. 1. A unital C* algebra (A, %) or A is a complex unital Banach algebra
equipped with an antilinear involution * denoted A — A : a +— a* satisfying for any
a,be Aand A\ € C

Q (ab) b*a*
(17) 1" =
(1i1) a*

(1) (Aa ) = \a*
(v) la*all = |la]*

2. A is called commutative if ab = ba for all a,b € A.

3. A C*-homomorphism between 2 unital C* algebra A and B is a map ¢ € L(A, B) s.t

(La) =1p, ¢lab) =p(a)p(b), ¢(a)=p(a)", Vaec AbeB.

Example 5.6.2. Let H be Hilbert, A = £(H). For any a € A, define a* := af, then A is a
unital C* algebra.

Example 5.6.3. Let (M,d) be a metric space, Cp(M) be the set of bounded continuous
functions f : M — C. Cy(M) is a Banach algebra. For any f € Cy(M), define f* = f, then
(Cyp(M), *) is a commutative C* algebra.

Lemma 5.6.4. Let H be a Hilbert space, A € L(H). For any polynomial p : C — C defined
by

n

p(z) = Zakzk, VzeC
k=0

where a, € C and a,, # 0, we define p: L(H) — L(H) by

n

p(A)=> aA¥, VA€ L(H).
k=0

Then for any polynomials p and g,

1) (p+q)(A) = p(A) + q(A)

2) (pg)(A) = p(A)q(A)

) a(p(A)) = p(a(4)).

4y If A is normal, then p(A) is normal.

7
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Proof. (1) (2) are obvious. (3) Let p € o(A), then ul — A is not bijective. Since u is a zero
for the polynomial p(u) — p(2), thus

where ¢ is a polynomial of degree n — 1. Then p(u)1 — p(A) = (ul — A)q(A) is not bijective
because pl — A is not bijective, and hence p(u) € o(p(A)).
Conversely, if 7 € o(p(A)), by factorization,

then

Since 71 — p(A) is not bijective, 11,1 — A is not bijective for some 1 < jo < n, i.e. pj, € o(A).
Since pj, is a zero for 7 — p(z), we have 7 = p(u;,), i.e. 7€ p(a(A)).
(4) If A is normal, AAt = ATA. Define ¢(A") = p(A)T, then AAt = ATA implies

p(A)q(AT) = g(A)p(A),
i.e. p(A)p(A)T = p(A)Tp(A) and hence p(A) is normal. N

Theorem 5.6.5. Let H be a Hilbert space, A € L(H) is s.a. Let ¥ = o(A) CR and C(X) be
the set of continuous function f : ¥ — C. Then there is a unital C* algebra homomorphism
by € LIC(X),L(H)) denoted by

Qa(f) = f(A), VfelCE)
s.t.
1) 1(A) = 1g and (fg)(A) = f(A)g(A) for all f,g € C(X)
2) F(A) = f(A)
3) dp(A) = A
4) If B € L(H) s.t. [A,B] =0, then [f(A), B] = 0 for all f € C(2).
5) ®4(C(X)) is the smallest C* subalgebra of L(H) containing A
6) If A € 2 and x € Ex(A), then f(A)z = f(N)z for all f € C()
7) f(A) is normal and o(f(A)) = f(o(A)) for all f € C(2)
8) If f € C(E,R) and g € C(f(X)), then (go f)(A) = g(f(A))
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Proof. Step 1:

Definition 5.6.6. Let H be a Hilbert space, A € L(H) is called positive semidefinite (p.s.d.)
if

(Az,z) >0, Vxe H.
We write A > 0 if A is p.s.d.

Corollary 5.6.7. Let H be a Hilbert space. Let A € L(H) be s.a. and p.s.d., then there is
a unique B € L(H) s.t. B is s.a., p.s.d., and B> = A.

Proof. Claim: o(A) C [0, 00).
Let A € 0(A). Suppose A < 0, then

I(A = AD)al| ]l = (A = Az, z) = (Aw,z) = Al=|* = |A[[|=],

so for x € H \ {0},
(A = AD)z[| = Al ]l

by Lemma 5.3.4, A ¢ o(A). Thus A > 0, i.e. o(A) C [0, 00).
Define f : o(A) — [0,00) by f(A) = VA for all A\ € o(A). Then f is continuous since
V- :]0,00) = [0, 00) is continuous and o(A) is compact.

5.7 Measurable functional calculus

Definition 5.7.1 (Projection valued measure). Let H be Hilbert, ¥ C C be a non-empty
closed subset. Let By, denote the collection of Borel subsets of 3. Then a projection valued
Borel measure on ¥ is a map By — L(H) : Q — Py s.t.

(1) For any Q € By, Pq is a s.a. unitary projection.
(2) Py =0, Py = 1p.

(3) For any Q1,Qs € By,
Po,na, = Po, Pa, = Po,Po,.

(4) If {Q;}32, C By are pairwise disjoint and €2 = U2 ,€2;, then for any = € H,

n
Por = lim ZPQj:c.
7=1

n—00 £

Definition 5.7.2. Let B(X) := {f : ¥ — C : f is bounded and Borel measurable}. It’s
clear B(¥) is a C* algebra.
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Theorem 5.7.3. Let H be a complexr Hilbert space. Let X C C be closed. Let Q2 — Pq be a
projection valued measure on X. For any x,y € H, define the signed Borel measure

,ux’y(Q) = Re (x, PQy>, V) € By.

Then there is a unique ¥ € L(B(X),L(H)) s.t. for any z,y € H, f € B(X),

Re (e, (/) = [

b))

Re (£)dry + [ 1 (7) diy

5
Proof. Step 1.

Theorem 5.7.4. Let H be a complex Hilbert space, A € L(H) and X = o(A). Then there is
a unique projection valued measure Q) — Pq s.t. for any x,y € H,

Re (z, Ay) = /Z Re (\) dpta y (N) + /E Im (A) dpta iy (V).

5.8 Cyclic vectors

Theorem 5.8.1. Suppose H is a complex Hilbert space and A € L(H) is s.a. Then there is
a collection of compact sets
> C U(A),

i € I, Borel measures u; € M(%;) and an isometric isomorphism
U:H— L (5, m)
iel
s.t. for any i € I, ¢; € L*(%;, 1), and \ € %,
(UAU i) () = Mi(N),
i.e. UAU™Y diagonalizes A. If H is separable, then I is countable.
Definition 5.8.2. Let A € L(H) be s.a. z € H is cyclic for A if

H = Span({A™z : n > 0}).

Theorem 5.8.3. Let A€ L(H) be s.a. and x € H be cyclic for A. Let ¥ = o(A). Let uy be
the measure s.t.

7= G pa). vrec)
Then
(1) There is a unique U € L(H, L*(X, uz)) s.t. U is isometric and
Ul =p(Az, Yo e ).
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(2) Let f € B(X), then
UF(AU Y = fo, W € L*(S, o).

(3) (UAUY)(N) = Mp(N\) for all o € L2(S, uy) and X € %,
(4) If Q C X is relatively open and nonempty, then
pz(§2) > 0.

Proof. Let T € L(C(X), H) given by
Ty =y(A)x, Y e CX)

Claim 1: T is isometric.
For any ¢ € C(X), we have

ITY||° = (Y(A)z, ¥(A)z)

= (V(A)z,
= (2, 0T (A)w(A)z)
= (2,0

z, p(A)p(A)z)
= {z, [y (A)x)

- / P2 djig
>

2
= [[¥llz2
Thus T' € L(C(X, H), H) is isometric.

Since any continuous function ¢ € C(X) can be approximated by simple functions in
L%(%, puz), we have C(X) is dense in L2(X, uz), then we can extend 7 uniquely to T' €
L(L*(X, ), H) s.t. T is isometric and

Ty =p(A)x, Vo € L* (S, ).

For simplicity, we denote T as T

Claim 2. T € L(L?*(%, uz), H) is isometric isomorphism.
We only need to show T is surjective. Let ¢, (\) = A", then

T = Pp(A)x = A"z,

Therefore

H = Span({A"z:n >0}) CIm(T) C H,

ie. Im(7T) = H and T is surjective.
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Then T is bijective and hence invertible, let U = T~ 1,
(1)Obviously true
(2)For any f € B(X),v € L*(%, e, we have fi) € L?(Z, piz), then

FAU = fAp(A)x = (fo)(A)z = U (f),

so Uf(A)U 1 = fap.
(3) follows from (2).

(4) O
Corollary 5.8.4. Let H be a complex Hilbert space. Let x € H \ {0} and A € L(H) be s.a.
Define

H, = Span({A”x : n > 0}),

then Hy is the smallest closed A-invariant subspace of H containing x. Define Ay = Aly ,

let ¥y = 0(Az). Then by Theorem 5.8.3, there is a unique isometric isomorphism U, €
L(Hy, L*(Sy, pi)) 8-t.

Uy ' = d(Aa)e, Y € L2(S, ).
Proof of Theorem 5.8.1. ]
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Chapter 6

Unbounded operators

6.1 Definition

Definition 6.1.1. Let X, Y be Banach.

(1) An unbounded linear operator from X to Y is a pair (A,dom(A)) where dom(A4) C X
and A : dom(A) — Y is linear.

(2) A is densely defined if dom(A) is dense in X.
(3) Ais closed if I'4 := {(z, Az) : x € dom(A)} is closed in X x Y.

(4) Let A: dom(A) C X — Y and B : dom(B) C Y — Z are unbounded linear operators,
then define BA : dom(BA) C X — Z to be the operator with

dom(BA) = {x € dom(A) : Az € dom(B)},
and BA(z) = B(Ax) for all z € dom(BA).

Remark. 1. Recall that dom(A) is a normed vector space w.r.t. I'4 norm and A is bounded
w.r.t. this norm.
2. If A is closed, then dom(A) is Banach w.r.t. I'y norm.

Example 6.1.2. Let C([0,1]) be the set of all continuous functions on [0, 1], and C*(]0,1]) C
C([0,1]) be the set of all continuously differentiable functions on [0,1]. (C([0,1]) ) is
Banach. C1([0,1]) is dense in C(]0,1]) by Stone-Weierstrass theorem. Define

oo

D : dom(D) = C([0,1]) — C([0,1])
by
d
Df = — Lo, 11).
f=f Vfech(o)
Then D is a densely defined, closed unbounded linear operator.

Definition 6.1.3. Let (A,dom(A)) be a closed unbounded linear operator from X to X.
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(1) The spectrum of A is defined as
o(A):={A e C: A1 - A:dom(A) — X is not bijective}.
(2) And
0(A) = Py(A) UC,(A) U Ry (A)

where P,(A), C,(A) and Rs(A) are defined analogously to those for bounded linear
operators.

(3) Define p(A) = o(A)“.

(4) For A € p(A), Ry\(A) := (A1 — A)~! : X — dom(A) C X is the resolvent operator of A at
A

Lemma 6.1.4. 0(A) is closed.

Proof. We want to show p(A) is open. Let A € p(A), then A\1 — A : dom(A) — X is bijective.
Let p € C,

pl— A=A —A+(pu—-N1=AL—-A)(1+(@u-NA1-A4)"
is bijective if and only if 1 4 (1 — A\)(AL — A)~! is bijective. The latter is bijective if

T-p(r-A)-t < 1,

if
A—pl-J0n - 47 <,
if ) g !
M < AT oI
1AL = A)~H|
Therefore, let § =1/ H()\]l — A)*lH, for any u € Bs(\), pl — A is bijective, i.e. p € p(A), thus
p(A) is open. ]

Lemma 6.1.5. R)(A) € L(X).

Proof. 1t’s clear Ry(A) is linear. Since A is closed, A1 — A is closed, i.e. the graph of A1 — A is
closed in X x X. Then since A1— A is bijective the graph of Ry(A) = (A\1—4)"! : X — dom(A)
is also closed in X x X. By closed graph theorem, R)(A) is bounded. []

Lemma 6.1.6. Let A : dom(A) € X — X be a densely defined unbounded operator. Let

w e p(A), then ,
Pa(Fy(4)) = (== : A € Fo(A)}:
CalR(A) = {5 : A € Ca(A)} U {0}
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1
- A
(Here Ry(A) means the residual spectrum of A, and Ry(A) means the resolvent operator of
A.)

Ro(Ru(A) = =7 A € Ro(A)}

Proof. Since R, (A) : X — dom(A)
0 € 0(A). Since —R,(A) = 01 —
In (01 — Ru(4) = Im (Ru(4)) =

0 € Cy(Ru(A)).

For A # p (because p € p(A)),

L Ru(A) = (1 (= At = )7

C X is bijective, R,(A) : X — X is not bijective, hence
R, (A) is injective, we have 0 ¢ P,(R,(A)). Moreover,
dom(A) is dense in X, so 0 ¢ R,(R,(A)). Therefore

- (250 - - 1) B
1

M—)\(
1

= (L= AR, (4).

pl —A—(p—AN1)Ru(A)

The left hand side is injective if and only if A1 — A is injective, is surjective if and only if
Al — A is surjective, and has a dense image if and only if A1 — A has a dense image. [

Definition 6.1.7. Suppose A : dom(A) C X — X is a closed, densely defined unbounded
operator. We say A has compact resolvent if p(A) # @ and R, (A) is compact for all ;1 € p(A).

Corollary 6.1.8. Suppose A has compact resolvent. Then o(A) = Py(A) is a discrete subset
of C and E\(A) has a finite dimension for all A € o(A).

6.2 Adjoints of unbounded operators

Definition 6.2.1. Let X,Y be Hilbert spaces. Let A : dom(A) C X — Y be a densely
defined unbounded linear operator. The adjoint of A, denoted AT : dom(AT) C VY — X is
defined as follows:

(i) dom(AT) = {y € Y : there is Cy > 0 s.t. [(Ax,y)| < Oy ||z|| for all z € dom(A)}

(ii) For any y € dom(AT) C Y, ¢ : dom(A) C X — C defined by = — (Az,y) is a bounded
linear functional, and can be uniquely extended to all elements in X because dom(A) is
dense in X. By Riesz’s representation theorem, there is a unique v € X s.t. ¢(x) = (z,v)
for all z € X, and define ATy = v, i.e.

(Az,y) = (z, ATy), Vz e dom(A).
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A is called self-adjoint (s.a.) if X =Y, dom(A) = dom(A") and
Alz = Az, Yz e dom(A).
Proposition 6.2.2. A' is closed.

Proof. We want to show T' 4 is closed in Y x X. Let {y,}2%, C dom(A") s.t. ¥, = ¥ and

n=1

Aly, — 250. Our goal is to show ys € dom(AT) and Too = Alyeo.
For any = € dom(A),

(Az,Yoo) = lim (Az,y,) = lim <:U,ATyn> = (2, Tx0),
n—o0 n—oo

thus
(AT, Yoo)| < ||Teol| 2],

i.e. Yoo € dom(AT). And by definition,
(A, ys0) = (z, ATyss),  Va € dom(A)

then
(2, Alyso — £50) =0, V€ dom(A).

Since dom(A) is dense in X, there is {z,}°%; C dom(A) s.t. 2, = ATYoo — Too, SO

<ATyoo — Lo, ATyoo - xoo> = < lim Tn, ATyOO - 5500) = nll—{go(xn’ ATyoo - xoo) =0,

n—oo
which implies 2o = Afyoo. [

Proposition 6.2.3 (Properties of the adjoint operator). Let X,Y be Hilbert spaces. Let
A:dom(A) C X =Y be a densely defined unbounded linear operator. Then

(1) If Pe L(X,Y), A € C, then

(A+P)T=AT+ P (AA)T =2AT
(2) A is closeable if and only if dom(AT) is dense inY.
(3) A is closed if and only if ATT = A

Lemma 6.2.4. Let A : dom(A) C X — Y be a densely defined unbounded linear operator.
Let J:Y x X - X xY be J(y,z) = (—=z,y), then

TG = J(T ).
Proof. If (x, Az) € T'4 and (y, ATy) € T4+, then
<<I’, A$)7 J(y) AT?J)>X><Y - <(£U, A[E), (_ATy7 y)>X><Y - <$7 _ATy>X + <Ax7y>y - 07
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so J([ ) C T4
Conversely, suppose (u,v) € Tk, we want to show (z,w) € J(I'41), i.e. (w,—z) € T4s. For
any z € dom(A), by definition of I'},

<<CL’, AI’)7 (Zu w>>X><Y - 07
then
(x,—2)x = (Az,w)y,
thus
[(Az, w)y| < ||lz[lx - |zl x ,

which shows w € dom(AT). Moreover,
(x,—2)x = (Az,w)y = (z, Alw)x, V& e dom(A),

thus
(z, Alw + 2) x = 0,Vz € dom(A),
since dom(A) is dense in X, we have ATw = —z, therefore (w, —z) € T 4. O]

Proof of Proposition 6.2.3. (i) Clear.
1
)

(ii) Suppose dom(AT) is not dense, then dom(Af
any w € dom(AT),

£ {0}. Let y € dom(AT) \ {0}, then for

<(07 y), (_Avaw»XXY - <y7 w>Y = 07
thus
(0,9) € (JT41)" = (T5) " =T4,

which means the projection I'y — X is not injective, thus by Lemma 2.3.5, A is not closeable.
This argument is reversible, so the reverse is also true.
(iii) If A = AT, then by Lemma 6.2.2, A is closed. If A is closed, then

a=T4 = (Th)" = (JDa)t
Lemma 6.2.5. 1 + ATA: dom(ATA) — X is bijective.
Proof. Step 1. Let u € dom(ATA), then u € dom(A), and

(u, ATAu) = (Au, Au) = || Aul?,

SO
lul || (1 + AT A)u]| > (u, (1 + ATA)u) = [ful® + || Aul|* > [Ju]®.
For u # 0,
(1 + AT Al > [Jul]
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therefore 1 + ATA is injective (and has a closed image).
Step 2. Let w € X, define Ay, € (dom(A)r,)* by

Ay(z) = (z,w)x, Vx e dom(A)r,.
Since A is closed, dom(A)rp, is closed, hence Hilbert, then there is v € dom(A)p, s.t.
Ayp(z) = (z,v)1, = (x,v)x + (Az, Av)y, Vo € dom(A)r,.

Therefore
(x,wyx = Ayp(z) = (z,v)x + (Azx, Av)y, V€ dom(A)p,,

then
[(Az, Av)y| = [(z,w —v) x| < [|z]| [[w — o],

so Av € dom(AT). Then
(z,0)r, = (z,0)x + (Az, Av)y = (z,0)x + (z, ATAv)x = (2, (1 + ATA)v)x,

and then
(z,(1+ ATAw)x = (z,w)x, ¥z e dom(A)r,.

Since dom(A) is dense in X, we have (1 + ATA)v = w, i.e. 1+ ATA is surjective. O
Lemma 6.2.6. dom(ATA) is dense in X.

Proof. Consider the inclusion map i : dom(A)r, — (X, (-,-)x). For the adjoint operator i,
since

[(i(2), y) x| = Kz, y) x| <yl - llyll . Vo € dom(A),y € X,
we have dom(i') = X, and for any z € dom(A)r, and y € dom(if) = X,
<Z(x)>y>X = <$7iT(y)>FA‘

Define A = (1 + ATA)~!: X — dom(ATA), which is bijective by Lemma 6.2.5. Then for any
w € X, xr € dom(A),

(
(

= (z, Aw)x + (z, ATAAw) x
(x,Aw)x + (Az, AAw) x
(z, A

- x? w>FA7
since dom(A) is dense in X, we have i'(w) = Aw. Then
Im (i") = Im (A) = dom(ATA).
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By Theorem 4.1.5, Im (i) is dense if and only if (i!)T is injective.
Claim: (if)T = i, hence it is injective.
First, for any y € dom(A) = dom(i) and z € dom(i') = X, we have
(6" (@), y)ral = [ i(w) x| = [z 9)x| < llyll - =]l

so dom(ift) = dom(A).
Second, for any w € dom(i'") = dom(A)r, and = € dom(iT) = X,

(i (w), 2)x = (w,if(2))r, = (i(w),2)x,
thus i (w) = i(w) for all w € dom(i'") = X. N

Theorem 6.2.7. Let X,Y be complex Hilbert spaces. Let A:dom(A) C X — Y be a closed,
densely defined unbounded linear operator. Then ATA is s.a., well-defined.

Proof. We want show (1) dom(ATA) = dom((ATA)") and (2) for any = € dom(AfA),
(ATA) 2 = AT Az,

Step 1: dom(ATA) C dom((ATA)T).
For any w € dom(AfA), Aw € dom(AT), thus for any 2 € dom(ATA),

(ATAw, ) = (Aw, Az) = (w, ATAz),

SO
(AT Aw, z)| < || ATAz|| - ],

i.e. w € dom((ATA)).
Step 2: dom((ATA)T) C dom(ATA).
Let v € dom((AfA)), then for any u € dom(ATA),

(v, ATAu) = ((ATA) v, u),

SO
(v, ATAu) x| < [Jullx - [[(ATA) 0| -

Define A € (dom(A)r,)* by
Au = (AT Au,v)x + (u,v)x, Vu € dom(ATA),

and since dom(AfA) is dense, we can extend the domain continuously to dom(A)p,! Then
by Riesz’s representation theorem, there is w € dom(A)p, s.t.

Au = (u,w)r, = (u,w)x + (Au, Aw) x.
Then for u € dom(ATA),
(u,v)x + (ATAu, v)x = (u, w)x + (Au, Aw)x,
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since Au € dom(AY),

(u,v) x + (ATAu,v)x = (u,w)x + (AT Au, v) x,
Le.

(14 ATA)yu, v —w)x =0, Yu € dom(ATA).

Since 1 4 ATA is bijection and dom(ATA) is dense, we have v = w, thus v € dom(A). Then
for any u € dom(ATA),
(v, ATAu) x = (Av, Au)x,

and
[(Av, Au) x| = |(v, ATAu) x| < [Jully - [|(ATA)T

which implies Av € dom(AT), therefore v € dom(AfA).
Step 3. Now we have shown dom(ATA) = dom((ATA)T). For any z,y € dom(ATA),

UHX’

(ATA) iz, y) = (z, ATAy) = (Az, Ay) = (AT Az, y),

since dom(ATA) is dense in X, we have (ATA)Tz = AT Az. ]

6.3 Functional calculus

Theorem 6.3.1. Let H be a complex Hilbert space.

(1) Let A : dom(A) C H — H be s.a. By the same argument for bounded s.a. operator,
g(A) CR. So we can define an invertible operator U : H — H by

U= (A—il)(A—i1)"L.

Then U is unitary, 1—U is injective, dom(A) = Im (1 —U) where A =i(1+U)(1-U)~ L.
U is called the Cayley transform of A.

(2) Let U € L(H) be unitary s.t. 1 — U 1is injective. Then
A=i(14+U)(1—-U)""':dom(A) - H,

where dom(A) =Im (1 — U), is s.a. and U is the Cayley transform of A.
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Appendix A

Some theorems

A.1 Zorn’s lemma

Definition A.1.1. A partially ordered set (S, <) is a pair consisting a set S and a relation
< on S called partial order s.t. for any z,y,z € S

(1) 2 < x;
(2) If x <y and y < z, then x = y;
(3) If x <y and y < z, then x < 2.

Definition A.1.2. Suppose (S, <) is a partial ordered set. T'C S is a subset (thus also a
partial ordered set).

1. For any z,y € S, denote = < y if z <y and x # y.
2. x,y € S are called comparable if either x <y or y < z.
3. T is called a chain (or totally ordered set) if any z,y € T are comparable.

4. s € S is called an upper bounded of T if for any x € T, s and = are comparable, and
moreover r < S.

5. m € S is called a maximal element of S if there is no such x € S s.t. m < z.

Theorem A.1.3 (Zorn’s lemma). Suppose (S, =) is a partially ordered set. If every chain
in S has an upper bound in S, then S has at least one mazximal element.

The following is a simple application of Zorn’s lemma.
Definition A.1.4. Suppose V is a vector space and B C V is a subset.

1. B is called linearly independent, if for any finite subset {vy,---,v,} C B, if there is
scalars ¢; € R (1 < i <n) s.t.

c1v1 + covo + -+ - + cpvn = 0,
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then ¢; =0forall 1 <:<n.

2. B spans V, denoted by V = Span(B), if for any v € V, there is a finite subset
{v1, -+ ,v,} € B and scalars ¢; € R (1 <i < n) s.t.

V= Clv1 + U2 + - - - + CpUp.

3. B is called a Hamel basis of V if

(a) B is linearly independent;
(b) Span(B) = V.

Lemma A.1.5. Suppose B CV is a linearly independent subset, if Span(B) C V', then for
any v € V \ Span(B), B U {v} is linearly independent.

Proof. Take v € V' \ Span(B), it is clear v # 0. Assume B U {v} is dependent, then there is
a finite subset {v1, -+ ,v,} C B and not all 0 scalars ¢; e R (1 <i<n+1) s.t.

c1v1 + - - -+ cpvp + cpr1v = 0.

Moreover, ¢,+1 # 0, otherwise ¢; = 0 for all 1 < i < n+1, then BU{v} is linearly independent.

Therefore
Cn

Loop -+
14
Cn+1 Cn+1

i.e. v € Span(B). []

v =

Un,

Theorem A.1.6. Fvery vector space has a Hamel basis.

Proof. Let V be a vector space, define
P :={B CV: Bis linearly independent},

then (P, C) is a partially ordered set. For any chain C C P, define

Be = | B,

BeC

then Bg is linearly independent, thus Be € P and then it is an upper bound of C. By Zorn’s
lemma (A.1.3), there is a maximal element B,, € P. It’s clear Span(B,,) = V, otherwise, we
can find v € V' \ Span(By,) s.t. B, U{v} € P, which means B,, is not a maximal element. [J

A.2 Compact sets
Theorem A.2.1. Suppose (X,d) is a metric space and A C X. TFAFE
(1) A is pre-compact.
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(2) Every sequence in A has a convergent subsequence.
(3) A is totally bounded and every Cauchy sequence in A converges in X.

Definition A.2.2. 7 C C(X) is equi-continuous if for every € > 0, there is § > 0 s.t. for all
x,y € X satisfying
d(z,y) <9,

we have
[f(x) = fy)l <e, VfeF.
Theorem A.2.3. Suppose (X,d) is a compact metric space and F C C(X). Then

(1) F is pre-compact if and only if it is bounded and equi-continuous.

(2) F is compact if and only if it is closed, bounded, and equi-continuous.

93



	Foundations
	Norm and normed vector space
	Finite-dimensional normed vector space
	Quotient space
	Dual space
	Hilbert space
	Banach algebra
	Baire category theorem

	Principles of functional analysis
	Uniform boundedness principle
	Open mapping theorem
	Closed graph theorem
	Hahn-Banach theorem
	Separation of convex sets
	Dual space and annihilator
	Reflexive space
	Separable space

	Weak and weak* topologies
	Weak topology
	Weak* topology

	Dual operator and compact operator
	Dual operator
	Compact operator

	Spectral theory
	Spectrum
	Spectrum of compact operators
	Spectrum of self-adjoint operators
	Spectrum of normal operators
	Integration
	Functional calculus
	Measurable functional calculus
	Cyclic vectors

	Unbounded operators
	Definition
	Adjoints of unbounded operators
	Functional calculus

	Some theorems
	Zorn's lemma
	Compact sets


