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Chapter 1

Foundations

1.1 Norm and normed vector space

Definition 1.1.1. 1. A normed vector space (X, ‖·‖) is a pair consisting a vector space X
over F and a function called norm ‖·‖ : X → R≥0 s.t.

(1) ‖v‖ = 0 if and only if v = 0

(2) for any c ∈ F and v ∈ X, we have ‖cv‖ = |c| · ‖v‖
(3) for any u, v ∈ X, we have ‖u+ v‖ ≤ ‖x‖+ ‖v‖.

2. A normed vector space (X, ‖·‖) defines a metric d : X ×X → R≥0 by

d(u, v) := ‖u− v‖ ,

which then induces a metric topology.

3. A complete normed vector space is called a Banach space.
Example 1.1.2. 1. For any 1 ≤ p <∞, define

ℓp := {{xi}∞i=1 ⊆ R :

∞∑
i=1

|xi|p <∞}.

Then ℓp is a Banach space with the norm defined by

‖{xi}∞i=1‖p :=

( ∞∑
i=1

|xi|p
)1/p

.

2. Define
ℓ∞ := {{xi}∞i=1 ⊆ R : sup

i≥1
|xi| <∞}.

Then ℓ∞ is a Banach space with the norm defined by

‖{xi}∞i=1‖∞ := sup
i≥1

|xi|.
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3. Let X be a topological space, define

Cb(X) := {f : X → R continuous and bounded},

then Cb(X) is a Banach space with the supremum norm

‖f‖∞ := sup
x∈X

|f(x)|, ∀f ∈ Cb(X).

Proposition 1.1.3. ‖·‖ : X → R is continuous.

Proof. For u, v ∈ X,
‖u‖ = ‖v + (u− v)‖ ≤ ‖v‖+ ‖u− v‖ ,

thus ‖u‖ − ‖v‖ ≤ ‖u− v‖, similarly, ‖v‖ − ‖u‖ ≤ ‖u− v‖, then we have

| ‖u‖ − ‖v‖ | ≤ ‖u− v‖ ,

which means ‖·‖ is Lipschitz continuous and hence continuous.

Definition 1.1.4. Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are two normed vector spaces.

1. A function A : X → Y is called bounded if there is a c ≥ 0, s.t. for any w ∈ X,

‖Aw‖Y ≤ c ‖w‖X .

2. The smallest such c is called the operator norm of A, denoted as ‖A‖, i.e.

‖A‖ = sup
w∈X\{0}

‖Aw‖Y
‖w‖X

.

3. Define L(X,Y ) = {A : X → Y s.t. A is linear and bounded}.

Proposition 1.1.5. Suppose ‖·‖ is the operator norm defined on L(X,Y ), then

1. For any A ∈ L(X,Y ) and w ∈ X,

‖Aw‖Y ≤ ‖A‖ · ‖w‖X .

2. The operator norm is a norm. Thus (L(X,Y ), ‖·‖) is a normed vector space. The resulting
metric topology is called the uniform operator topology.

3. For any A ∈ L(X,Y ),

‖A‖ = sup
w∈X\{0}

‖Aw‖Y
‖w‖X

= sup
w∈X,∥w∥X≤1

‖Aw‖Y

= sup
w∈X,∥w∥X=1

‖Aw‖Y .
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Theorem 1.1.6. Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are two normed vector spaces, A : X → Y

is linear, then TFAE
1. A is bounded

2. A is continuous

3. A is continuous at 0.
Proof. 1 =⇒ 2. Suppose A is bounded, then for any u, v ∈ X,

dY (Au,Av) = ‖Au− Av‖Y = ‖A(u− y)‖Y ≤ ‖A‖ · ‖u− y‖X = ‖A‖ dX(u, y),

thus A is Lipschitz continuous, hence continuous.
2 =⇒ 3: Obvious.
3 =⇒ 1: Suppose A is continuous at 0. Take ε = 1, then there is a δ > 0 s.t. for any
‖u‖X < δ, we have ‖Au‖Y < 1. Let w ∈ X \ {0},

‖Aw‖Y =
2 ‖w‖X

δ

∥∥∥∥A( δw

2 ‖w‖X
)

∥∥∥∥
Y

≤ 2

δ
· ‖w‖X ,

where δw/(2 ‖w‖X) has the norm δ

2
< δ.

Corollary 1.1.7. Suppose X,Y are normed vector spaces, and A ∈ L(X,Y ). Then Ker (A)
is a closed subspace of X.

Proof. Let {xk}∞k=1 is a convergent sequence in Ker (A) and x ∈ X is the limit, then by the
continuity of A,

Ax = A( lim
k→∞

xk) = lim
k→∞

Axk = 0,

thus x ∈ Ker (A), and hence Ker (A) is closed.

1.2 Finite-dimensional normed vector space

Definition 1.2.1. Suppose ‖·‖1 and ‖·‖2 are two norms on X. They are called equivalent if
there is 0 < c1 ≤ c2 s.t. for any w ∈ X,

c1 ‖w‖1 ≤ ‖w‖2 ≤ c2 ‖w‖1 .

Theorem 1.2.2. Suppose X is a finite-dimensional vector space over F(= R or C). Then
any two norms on X are equivalent.

Proof. 1. Choose the standard basis {ej}nj=1 for X, then for any x =
∑n

j=1 xjej, define the
norm ‖ · ‖2 on X by

‖x‖2 =

√√√√ n∑
j=1

x2j .
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Suppose ‖·‖ is any other norm on X, then

‖x‖ =

∥∥∥∥∥∥
n∑
j=1

xjej

∥∥∥∥∥∥ ≤
n∑
j=1

‖xjej‖ =

n∑
j=1

|xj | ‖ej‖ ≤

√√√√ n∑
j=1

x2j

√√√√ n∑
j=1

‖ej‖2 = c2 ‖x‖2 ,

where c2 =
√∑n

j=1 ‖ej‖
2 is a constant.

2. For the other inequality, consider

S = {v ∈ X : ‖v‖2 = 1}.

Let n = dimX, then S ⊆ Rn, easy to check S is closed and bounded, therefore compact by
Heine-Borel theorem. And ‖·‖ : S → R is continuous by Proposition 1.1.3. Thus ‖·‖ achieves
its minimum c1 on S. For any non-zero w ∈ X, w/ ‖w‖2 ∈ S, then∥∥∥∥ w

‖w‖2

∥∥∥∥ ≥ c1,

i.e. ‖w‖ ≥ c2 ‖w‖2.

Corollary 1.2.3. Every finite-dimensional normed vector space is Banach.
Corollary 1.2.4. Every finite-dimensional subspace of a normed vector space is closed.

Proof. By Corollary 1.2.3, any finite-dimensional normed vector space is Banach, thus com-
plete, and every complete subspace is closed.

Corollary 1.2.5. Suppose (X, ‖·‖) is a finite-dimensional normed vector space. Then K ⊆ X

is compact if and only if K is closed and bounded.
Corollary 1.2.6. Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are two normed vector spaces and X is
finite-dimensional. Then every linear map A : X → Y is continuous.

Proof. Suppose A : X → Y is linear, define a new norm ‖·‖A on X by

‖x‖A = ‖x‖X + ‖Ax‖Y , ∀x ∈ X.

Since X is finite-dimensional, ‖·‖A is equivalent to ‖·‖X , then there is c ≥ 0 s.t.

‖Ax‖Y ≤ ‖x‖A ≤ c ‖x‖X ,

i.e. A is bounded and hence continuous.

Theorem 1.2.7. Suppose (X, ‖·‖) is a normed vector space, let

B̄ = {v ∈ X : ‖v‖ ≤ 1}, S = {v ∈ X : ‖v‖ = 1}.

Then TFAE:
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1. dimX <∞.

2. B̄ is compact.

3. S is compact.
To prove Theorem 1.2.7, we need the following Lemma.

Lemma 1.2.8 (Riesz’s Lemma). Suppose (X, ‖·‖) is a normed vector space, Y ⊊ X is a
closed subspace, then for any δ ∈ (0, 1), there exists w ∈ X (actually w ∈ X \Y ) s.t. ‖w‖ = 1

and
‖w − y‖ ≥ 1− δ, ∀y ∈ Y.

Proof. 1. Since Y ⊊ X, we can find w0 ∈ X \ Y .
2. Since Y is closed, X \ Y is open, then there is an open ball Br(w0) with radius r > 0 s.t.
Br(x) ⊆ X \ Y i.e. Br(w0) ∩ Y = ∅. Then

d = inf
y∈Y

‖w0 − y‖ > r > 0.

3. By the definition of inf (d is the maximal lower bound of ‖w0 − y‖ for y ∈ Y , any number
greater than d is no longer a lower bound), there is y0 ∈ Y s.t.

‖w0 − y0‖ ≤ d

1− δ
.

4. Let w =
w0 − y0

‖w0 − y0‖
, then ‖w‖ = 1 and for any y ∈ Y ,

‖w − y‖ =

∥∥∥∥ w0 − y0
‖w0 − y0‖

− y

∥∥∥∥
=

1

‖w0 − y0‖
· ‖w0 − (y0 + y ‖w0 − y0‖)‖

≥ d

‖w0 − y0‖
(since y0 + y ‖w0 − y0‖ ∈ Y and d is a lower bound)

≥ d

d/(1− δ)

= 1− δ.

Proof (Theorem 1.2.7). 1 =⇒ 2 =⇒ 3 is clear. Left to show 3 =⇒ 1. We will prove by
contradiction.
1. Assume S is compact and X is infinite-dimensional. Let x1 ∈ S and Y1 = Span({x1}). Y1
is closed by Corollary 1.2.4. By Riesz’s Lemma, we can find x2 ∈ X \ Y1 s.t.

‖x2‖ = 1 and ‖x1 − x2‖ ≥ 1

2
,
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it’s clear x2 ∈ S.
2. Inductively, suppose we have found {x1, · · · , xn} ⊆ S s.t.

‖xi − xj‖ ≥ 1

2
, ∀1 ≤ i 6= j ≤ n.

Let Yn = Span({x1, x2, · · · , xn}), Yn is closed thus by Riesz’s Lemma, we can find xn+1 ∈
X \ Yn s.t.

‖xn+1‖ = 1 and ‖xn+1 − xi‖ ≥ 1

2
∀1 ≤ i ≤ n.

3. In this way, we can construct a sequence {xj}∞j=1 ⊆ S (infinite-dimension guarantees that
we can find infinitely many xj) s.t.

‖xi − xj‖ ≥ 1

2
, ∀i 6= j,

which obviously has no Cauchy subsequences thus no convergent subsequences. This con-
tradicts that S is compact.

Remark. This theorem tells us compactness may be lost in infinite-dimensional normed
vector spaces.

1.3 Quotient space

Definition 1.3.1. Let (X, ‖·‖) be a normed vector space, and Y ⊆ X is a closed subspace.

1. Define equivalence relation ∼ on X by

x ∼ y ⇐⇒ x− y ∈ Y,

and denote [x] := {y ∈ X : y ∼ x} to be the equivalence class containing x.

2. Define the quotient space by X/Y := {[x] : x ∈ X}.

3. Define a norm ‖·‖X/Y on X/Y by

‖[x]‖X/Y = inf
y∈Y

‖x+ y‖X .

Lemma 1.3.2. ‖·‖X/Y defined above is a norm on X/Y .

1.4 Dual space

Theorem 1.4.1. Suppose X is a normed vector space and Y is a Banach space. Then
L(X,Y ) is a Banach space.
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Proof. 1. Suppose {An}∞n=1 ⊆ L(X,Y ) is a Cauchy sequence, our goal is to show its limit is
also contained in L(X,Y ).
2. For any w ∈ X, {Anw}∞n=1 ⊆ Y is also a Cauchy sequence because

‖Anw − Amw‖Y ≤ ‖An − Am‖ ‖w‖X .

Since Y is Banach, {Anw}∞n=1 has a limit in Y , denoted as

A∞w := lim
n→∞

Anw.

3. We can pointwise define A∞ : X → Y by w 7→ A∞w. Then A∞ is linear.
4. An → A∞ w.r.t. operator topology.
Since {An}∞n=1 is Cauchy, for any ε > 0, there is Nε ∈ Z+ s.t. for any m,n ≥ Nε,

‖An − Am‖ < ε.

Thus

‖A∞w − Anw‖Y ≤ ‖A∞w − Amw‖Y + ‖Amw − Anw‖Y < ‖A∞w − Amw‖Y + ε ‖w‖X ,

let m→ ∞, we have
‖A∞w − Anw‖Y < ε ‖w‖X ,

i.e. ‖A∞ − An‖ < ε.
5. A∞ is bounded. From Step 4 and ANε

∈ L(X,Y ) hence bounded, we have

‖A∞w‖Y ≤ ‖A∞w − ANε
w‖Y + ‖ANε

w‖Y ≤ ε ‖w‖X + ‖ANε
‖ · ‖w‖X = (ε+ ‖ANε

‖) ‖w‖X .

Definition 1.4.2. Suppose X is a normed vector space, X∗ := L(X,R) is called the dual
space of X.

Remark. From Theorem 1.4.1, although X may not be Banach, X∗ is always a Banach
space.

Definition 1.4.3. Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are two normed vector spaces.

1. A map A : X → Y is called isometric (or an isometric embedding) if it preserves the norm,
i.e. ‖Aw‖Y = ‖w‖X for all w ∈ X.

2. An isometric map A : X → Y is called an isometry if it is bijective.

3. A linear isometry A : X → Y is called an isometric isomorphism.

Remark. 1. Any linear isometric map is continuous because it is 1-Lipschitz.

2. Any linear isometric map is injective. Suppose there is w1, w2 ∈ X s.t. Aw1 = Aw2,
then A(w1 − w2) = 0. Since A is isometric, we have 0 = ‖A(w1 − w2)‖Y = ‖w1 − w2‖X ,
then w1 = w2.
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3. An isometric isomorphism gives an equivalence relation.

4. An isometric isomorphism preserves all necessary properties between two normed vector
spaces, so we can regard two normed vector spaces as the same if there is an isometric
isomorphism between them.

Example 1.4.4. (Rn)∗ = Rn

Example 1.4.5. For any p, q ∈ (1,∞) with 1

p
+

1

q
= 1, we have [Lp(µ)]∗ = Lq(µ).

Example 1.4.6. [L1(µ)]∗ = L∞(µ).

Example 1.4.7. For any p, q ∈ (1,∞) with 1

p
+

1

q
= 1, we have (ℓp)∗ = ℓq.

Proof. Define ϕ : ℓq → (ℓp)∗ as follows, for any x = {xi}∞i=1 ∈ ℓq, y = {yi}∞i=1 ∈ ℓp,

ϕ(x)(y) :=

∞∑
i=1

xiyi.

Then ϕ is well-defined (ϕ(x) ∈ (ℓp)∗), linear, isometric and bijective, i.e. it is an isometric
isomorphism.

Example 1.4.8. (ℓ1)∗ = ℓ∞.

Proof. Define a map ϕ : ℓ∞ → (ℓ1)∗ as follows, for any x = {xi}∞i=1 ∈ ℓ∞, y = {yi}∞i=1 ∈ ℓ1,

ϕ(x)(y) :=

∞∑
i=1

xiyi.

Example 1.4.9. let c0 := {(x1, x2, · · · ) ∈ RN : xi → 0} ⊆ ℓ∞. Then (c0)
∗ = ℓ1.

1.5 Hilbert space

Definition 1.5.1. Let H be a real vector space.

1. A bilinear map 〈·, ·〉 : H ×H → R is called an inner product if it is

(1) symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ H;
(2) and positive definite: 〈x, x〉 > 0 for all x ∈ H \ {0}.

2. (H, 〈·, ·〉) is called an inner product space (often denoted as H for short).

3. Define a norm on an inner product space by ‖x‖ =
√

〈x, x〉.

4. An inner product space (H, 〈·, ·〉) is called a Hilbert space if (H, ‖·‖) is a Banach space.
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Proposition 1.5.2. Suppose H is an inner product space. Then for any x, y ∈ H,

1. Polarization identity: 2〈x, y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2.

2. Parallelogram law: ‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + ‖y‖2.

3. Cauchy-Schwarz inequality: |〈x, y〉| ≤ ‖x‖ ‖y‖.

4. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Remark. From 4, ‖·‖ is indeed a norm on H.

Theorem 1.5.3 (Riesz). Suppose H is a Hilbert space. The map Λ : H → H∗ defined by
Λ(y) = 〈·, y〉 is an isometric isomorphism.
Definition 1.5.4. Suppose Ω is a subset of a vector space. Ω is called convex if for any
u, v ∈ Ω and t ∈ [0, 1], we have

tu+ (1− t)v ∈ Ω.

Example 1.5.5. Suppose X is a vector space, then

1. X and ∅ are convex.

2. Suppose ‖·‖ is a norm defined on X, then for any x0 ∈ X, the unit ball

B1(x0) := {x ∈ X : ‖x− x0‖ < 1}

is convex.

3. Any subspace of X is convex.

Proof. For any u, v ∈ B1(x0) and t ∈ [0, 1],

‖tu+ (1− t)v − x0‖ ≤ ‖tu− tx0‖+ ‖(1− t)v − (1− t)x0‖ = t ‖u− x0‖+ (1− t) ‖v − x0‖ < 1.

Lemma 1.5.6. Suppose H is a Hilbert space and K ⊆ H is a non-empty, closed and convex
subset. Then there is a unique element x0 ∈ K s.t. ‖x0‖ ≤ ‖x‖ for all x ∈ K.

Proof. 1. Since {‖x‖ : x ∈ K} has a lower bound 0, it must have an inf, let

δ = inf{‖x‖ : x ∈ K} ≥ 0.

By the definition of inf, for any n ∈ Z+, there is xn ∈ K s.t.

δ ≤ ‖xn‖ < δ +
1

n
,

then there exists a sequence {xn}∞n=1 ⊆ K s.t.

lim
n→∞

‖xn‖ = δ.
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2. Claim: {xn}∞n=1 is a Cauchy sequence.
Given ε > 0, there is N ∈ Z+, s.t. for any n ≥ N ,

‖xn‖2 < δ2 +
ε2

4
.

(solving the inequality δ + 1

N
<

√
δ2 +

ε2

4
gives the value of N). For any m,n ≥ N , since K

is convex, we have
xm + xn

2
∈ K,

thus ∥∥∥xm + xn
2

∥∥∥ ≥ δ.

Then
‖xm − xn‖2 = 2 ‖xm‖2 + 2 ‖xn‖2 − ‖xm + xn‖2 < 4(δ2 +

ε2

4
)− 4δ2 = ε2,

i.e. ‖xm − xn‖ < ε and hence {xn}∞n=1 is Cauchy.
3. Since H is Hilbert and K is closed, K is complete. Then there is x∞ ∈ K s.t. xn → x∞.
Therefore by the continuity of norm,

‖x∞‖ =
∥∥∥ lim
n→∞

xn

∥∥∥ = lim
n→∞

‖xn‖ = δ.

4. Uniqueness. Suppose there is y ∈ K with ‖y‖ = δ. Then (y + x∞)/2 ∈ K, thus

‖y + x∞‖ ≥ 2δ.

Then
‖y − x∞‖2 = 2 ‖y‖2 + 2 ‖x∞‖2 − ‖y + x∞‖2 ≤ 2δ2 + 2δ2 − 4δ2 = 0,

which implies y = x∞.

Proof of Theorem 1.5.3. 1. It’s clear Λ : H → H∗ is linear, we will show it is also isometric.
For any y ∈ H, recall Λ(y)(·) = 〈·, y〉, then

‖Λ(y)‖ = sup
x∈H\{0}

|〈x, y〉|
‖x‖

≤ sup
x∈H\{0}

‖x‖ ‖y‖
‖x‖

= ‖y‖ .

Since Λ(y) ∈ H∗ is bounded, we have

‖y‖2 = |Λ(y)(y)| ≤ ‖Λ(y)‖ ‖y‖ ,

thus ‖y‖ ≤ ‖Λ(y)‖. Therefore ‖Λ(y)‖ = ‖y‖ for any y ∈ H, i.e. Λ is isometric.
2. Since the linear isometric map is already injective, we only need to show Λ is surjective.
If ϕ = 0, then ϕ = Λ(0). Let ϕ ∈ H∗ \ {0} and K = {x ∈ H : ϕ(x) = 1}. Then K is:

14
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(1) Non-empty. Since ϕ 6= 0, there is ξ ∈ H s.t. ϕ(ξ) 6= 0. Let x = ξ/ϕ(ξ), then ϕ(x) = 1.

(2) Closed. Because ϕ is continuous and {1} is closed.

(3) Convex. For any u, v ∈ K, and t ∈ [0, 1],

ϕ(tu+ (1− t)v) = tϕ(u) + (1− t)ϕ(v) = t+ (1− t) = 1,

thus tu+ (1− t)v ∈ K.

By Lemma 1.5.6, there is x0 ∈ K s.t. ‖x0‖ ≤ ‖x‖ for any x ∈ K.
3. Claim: x0 ⊥ Kerϕ.
Let y ∈ Kerϕ, we need to show 〈x0, y〉 = 0. For any t ∈ R,

x0 + ty ∈ K,

from Step 2,
‖x0‖2 ≤ ‖x0 + ty‖2 = ‖x0‖2 + t2 ‖y‖2 + 2t〈x0, y〉.

Let f(t) = ‖x0 + ty‖2, then f(t) attains its minimum at t = 0, we have

0 =
d
dtf(0) = 2〈x0, y〉,

thus 〈x0, y〉 = 0.
4. For any x ∈ H, our goal is to find y ∈ H, s.t. ϕ(x) = Λ(y)(x), i.e. Λ is surjective. Recall
ϕ(x0) = 1, so

ϕ(x− ϕ(x)x0) = ϕ(x)− ϕ(x)ϕ(x0) = 0,

which means x− ϕ(x)x0 ∈ Kerϕ. By Step 3,

〈x0, x− ϕ(x)x0〉 = 0,

i.e.
〈x0, x〉 = 〈x0, ϕ(x)x0〉 = ϕ(x) ‖x0‖2 ,

thus
ϕ(x) = 〈x, x0

‖x0‖2
〉 = Λ(

x0

‖x0‖2
)(x).

Corollary 1.5.7. Suppose H is a Hilbert space, then for any ϕ ∈ H∗, there is a unique
y ∈ H, s.t.

ϕ(x) = 〈x, y〉, ∀x ∈ H.

Definition 1.5.8. Let S ⊆ H be a subset of a Hilbert space. Define

S⊥ = {x ∈ H : 〈x, y〉 = 0, ∀y ∈ S}.

Remark. By Theorem 1.5.3, S⊥ is the same (in the sense of isometric isomorphism) as the
annihilator of S, i.e. {ϕ ∈ H∗ : ϕ(y) = 0, ∀y ∈ S}.

15
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Corollary 1.5.9. Suppose H is a Hilbert space and E ⊆ H is a closed subspace, then

H = E ⊕ E⊥.

Proof. It suffices to prove H = E + E⊥ and E ∩ E⊥ = {0}. It’s clear 0 ∈ E ∩ E⊥. On the
other hand, for any x ∈ E ∩ E⊥, 〈x, x〉 = 0, which implies x = 0, thus E ∩ E⊥ = {0}.
For any y ∈ E, y + E is non-empty, closed and convex, then by Lemma 1.5.6, there is a
unique element ξ ∈ E, s.t.

‖y + ξ‖ ≤ ‖x‖ ∀x ∈ y + E.

For any e ∈ E and t ∈ R, y + ξ + te ∈ y + E. Let

f(t) = ‖y + ξ + te‖ = ‖y + ξ‖2 + t2 ‖e‖+ t〈y + ξ, e〉,

since f attains its minimum at t = 0, we have

0 = f ′(0) = 〈y + ξ, e〉,

i.e. y + ξ ∈ E⊥, therefore y = (−ξ) + (y + ξ) ∈ E + E⊥.

Corollary 1.5.10. Suppose H is a Hilbert space and E ⊆ H is a closed subspace, then

E = (E⊥)⊥.

Proof. 1. Let x ∈ (E⊥)⊥ ⊆ H, x = x1 + x2 for some x1 ∈ E and x2 ∈ E⊥, which implies

〈x1, x2〉 = 0, 〈x, x2〉 = 0,

then 〈x2, x2〉 = 〈x − x1, x2〉 = 0, i.e. x2 = 0 and hence x = x1 ∈ E. For the other direction,
since E⊥ is always closed (See Definition 2.6.1), H = E⊥ ⊕ (E⊥)⊥. Then for any x ∈ E,
x = x1 + x2 for some x1 ∈ E⊥ and x2 ∈ (E⊥)⊥, then

〈x, x1〉 = 0, 〈x1, x2〉 = 0,

so x1 = 0 and x = x2 ∈ (E⊥)⊥.

The following is an application of Riesz representation theorem.

Theorem 1.5.11 (Lax-Milgram). Suppose H is a real Hilbert space. Let B : H ×H → R be
a bilinear and there exists α, β > 0 s.t. for any u, v ∈ H,

1. |B(u, v)| ≤ α ‖u‖ ‖v‖;

2. B(u, u) ≥ β ‖u‖2.

Then for any ϕ ∈ H∗, there is a unique u ∈ H s.t. for any v ∈ H,

B(u, v) = φ(v).
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Proof. 1. For a fixed u ∈ H, define Tu : H → R by Tu(·) = B(u, ·), then Tu is linear and
bounded, i.e. Tu ∈ H∗. By Riesz representation theorem (1.5.3), there is a unique w ∈ H,
s.t.

Tu(·) = 〈w, ·〉.

Define a map A : H → H by taking u as input and returning w as output, i.e.

B(u, ·) = 〈Au, ·〉.

2. A ∈ L(H).
Let u1, u2 ∈ H and c ∈ R, then

〈A(cu1 + u2), ·〉 = B(cu1 + u2, ·) = cB(u1, ·) + B(u2, ·) = 〈cAu1, ·〉+ 〈Au2, ·〉 = 〈cAu1 + Au2, ·〉,

therefore A is linear. For any u ∈ H s.t. Au 6= 0 (Au = 0 is trivially bounded), we have

‖Au‖2 = 〈Au,Au〉 = B(u,Au) ≤ α ‖u‖ ‖Au‖ ,

divided by ‖Au‖, we have ‖Au‖ ≤ α ‖u‖, thus A is bounded.
3. A is injective.
For any u ∈ H,

β ‖u‖2 ≤ B(u, u) = 〈Au, u〉 ≤ ‖Au‖ · ‖u‖ ,

assume u 6= 0, then
β ‖u‖ ≤ ‖Au‖ ,

which is also true for u = 0, thus is true for all u ∈ H. For any u1, u2 ∈ H with u1 6= u2, we
have

‖A(u1 − u2)‖ ≥ β ‖u1 − u2‖ > 0,

then Au1 6= Au2, i.e. A is injective.
4. Im (A) is closed in H.
Let {yi}∞i=1 ⊆ Im (A) be a convergent sequence (i.e. Cauchy) in H, we want to show y :=

limi→∞ yi ∈ Im (A). Since A is injective, for any i ≥ 1, we can find a unique xi ∈ H s.t.
Axi = yi. By Step 3,

0 ≤ ‖xm − xn‖ ≤ 1

β
‖Axm − Axn‖ ,

thus {xi}∞i=1 is Cauchy. Then there is x ∈ H s.t. xi → x by completeness of H. Moreover,
by the boundedness of A,

‖Ax− y‖ = lim
i→∞

‖A(x− xi)‖ ≤ lim
i→∞

α ‖x− xi‖ = 0,

therefore Ax = y and y ∈ Im (A), i.e. Im (A) is closed.
5. Im (A) = H and hence A is bijective.
Since Im (A) is closed, by Corollary 1.5.9,

H = Im (A)⊕ Im (A)⊥.
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If Im (A) ⊊ H, Im (A)⊥ 6= {0}, then there exists u ∈ Im (A)⊥ \ {0}, then we have

‖u‖2 ≤ 1

β
B(u, u) = 〈Au, u〉 = 0,

which contradicts u 6= 0.
4. For any ϕ ∈ H∗, by Riesz representation theorem (1.5.3), there is a unique w ∈ H s.t.

ϕ(·) = 〈w, ·〉.

To find u ∈ H s.t.
〈Au, ·〉 = B(u, ·) = ϕ(·) = 〈w, ·〉,

i.e. we need to find u ∈ H s.t. Au = w. Since A : H → H is bijective, there is a unique
solution u = A−1w.

Remark. From Step 2 we have ‖A‖ ≤ α. From Step 3, for any w ∈ H,∥∥A−1w
∥∥ ≤ 1

β

∥∥A(A−1w)
∥∥ =

1

β
‖w‖ ,

thus
∥∥A−1

∥∥ ≤ 1/β. This implies A−1 ∈ L(H). We can also apply the Inverse operator
theorem to show A−1 ∈ L(H).

1.6 Banach algebra

Definition 1.6.1. 1. A Banach algebra is a Banach space A equipped with a bilinear map
called product A×A → A: (x, y) 7→ xy s.t. it is

(i) associative, i.e. for any a, b, c ∈ A, (ab)c = a(bc);
(ii) and for any a, b ∈ A, ‖ab‖ ≤ ‖a‖ · ‖b‖.

2. A Banach algebra is commutative if for any a, b ∈ A, ab = ba.

3. A Banach algebra is unital if there exists a unit 1A ∈ A s.t. for any b ∈ A, 1A · b = b

and b · 1A = b.

4. If A is unital, then b ∈ A is called invertible if there is x ∈ A s.t. bx = xb = 1A. x is
called the inverse of b, denoted by b−1.

Remark. 1. If they exist, both the unit and the inverse are unique.

2. If A is unital, the set of invertible elements forms a group.

Example 1.6.2. Suppose X is a Banach space. Let L(X) := L(X,X) be the set of endo-
morphisms of X. Then A is a Banach algebra with the product given by composition. L(A)
is also unital because the identity map is the unit.

18



Notes Huarui Zhou MATH635

Proof. Only need to show (ii). Let a, b ∈ L(X), then

‖ab‖ = sup
x∈X\{0}

‖a ◦ b(x)‖X
‖x‖X

≤ sup
x∈X\{0}

‖a‖ ‖b(x)‖X
‖x‖X

≤ ‖a‖ · ‖b‖ .

Example 1.6.3. Suppose Ω is a complete metric space. Let C(Ω) be the set of all continuous
functions: Ω → R. Then C(Ω) with the supremum norm is a Banach space. And C(Ω) with
the function product is a commutative and unital Banach algebra.

Example 1.6.4. Let
C0(Rn) = {f ∈ C(Rn) : lim

|x|→∞
f(x) = 0, }

then C0(Rn) is a commutative Banach algebra but not unital.

Theorem 1.6.5. Suppose A is a Banach algebra. Then

1. For any a ∈ A,
ra := lim

n→∞
‖an‖1/n

exists and ra ≤ ‖a‖. We call ra the spectral radius of a.

2. If A is unital and a ∈ A satisfies ra < 1, then 1− a is invertible and

(1− a)−1 =

∞∑
k=0

ak.

3. If A is unital, let G be the set of all invertible elements in A. Then G forms a group and
is an open subset of A. The function G→ G : b 7→ b−1 is continuous.

Proof. 1. Since
∥∥an+1

∥∥ = ‖a · an‖ ≤ ‖a‖ · ‖an‖, inductively, we have

‖an‖ ≤ ‖a‖n , ∀n ≥ 1.

Then
‖an‖1/n ≤ ‖a‖ ,

i.e. {‖an‖1/n}∞n=1 is a bounded real sequence and limn→∞ ‖an‖1/n ≤ ‖a‖ if the limit exists.
Let r = infn≥1 ‖an‖1/n, by definition of inf, for any ε > 0, there is m ∈ Z+ s.t.

‖am‖1/m < r + ε.

For any n ∈ Z+, there is k, l ≥ 0 s.t. l < m and n = km+ l. Then

‖an‖1/n =
∥∥akm+l

∥∥1/n ≤ ‖am‖k/n ‖a‖l/n ≤ (r + ε)km/n ‖a‖l/n ,

then
r ≤ lim inf

n→∞
‖an‖1/n ≤ lim sup

n→∞
‖an‖1/n = r + ε,
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therefore r = limn→∞ ‖an‖1/n.
2.
3. For any a ∈ G, we will show B1/∥a−1∥(a) ⊆ G, G is therefore open. Let b ∈ B1/∥a−1∥(a),
i.e. ‖a− b‖ < 1/

∥∥a−1
∥∥, and

∥∥1− a−1b
∥∥ ≤ ‖a− b‖

∥∥a−1
∥∥ < 1. Let c = 1 − a−1b, we have

rc ≤ ‖c‖ < 1, then by (2), a−1b = 1− c ∈ G and hence b = a(a−1b) ∈ G, i.e. G is open.
Next, we will show G → G : b 7→ b−1 is continuous. It suffice to show for any a ∈ G, it is
continuous at a, i.e. for any ε > 0, there is Bδ(a) ⊆ G s.t. for all b ∈ Bδ(a),∥∥a−1 − b−1

∥∥ < ε.

Let δ < 1/
∥∥a−1

∥∥, then by previous step, b ∈ G, then

∥∥b−1 − a−1
∥∥ ≤

‖a− b‖
∥∥a−1

∥∥2
1− ‖a− b‖ ‖a−1‖

.

If we let
‖a− b‖ < ε

‖a−1‖2 + ε ‖a−1‖
,

then we have ∥∥b−1 − a−1
∥∥ < ε,

therefore we find
δ = min{ ε

‖a−1‖2 + ε ‖a−1‖
, 1/
∥∥a−1

∥∥}.
1.7 Baire category theorem

Definition 1.7.1. Suppose (X, d) is a metric space.

1. A ⊆ X is called nowhere dense if
(A)◦ = ∅.

2. A ⊆ X is called meager if it is a countable union of nowhere dense sets.

3. A is called non-meager if it is not meager.

4. A ⊆ X is called residual if Ac is meager.

Remark. 1. If X is non-empty, then ∅ is meager and X is residual.

2. If X = ∅, then X is both meager and residual.

Lemma 1.7.2. Suppose (X, d) is a metric space.

1. A ⊆ X is nowhere dense if and only if Ac contains a dense open subset.

2. If B ⊆ X is meager and A ⊆ B, then A is meager.
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3. If A ⊆ X is non-meager and A ⊆ B ⊆ X, then B is non-meager.

4. Any countable union of meager sets is meager.

5. Any countable intersection of residual sets is residual.

6. A ⊆ X is residual if and only if A contains a countable intersection of open subsets of X.

Proof. 1. Suppose A is nowhere dense, using the fact (A)c = (Ac)◦ and (A◦)c = Ac, we have

X = ((A)◦)c = (A)c = (Ac)◦,

i.e. (Ac)◦ is dense in X, we are done since (Ac)◦ is an open set contained in Ac. For the other
direction, suppose Ac contains a dense open subset B. Since B ⊆ (Ac)◦, X = B ⊆ (Ac)◦.
2. 3. 4. Clear.
5.

Lemma 1.7.3. Suppose (X, d) is a metric space, TFAE

1. Every residual subset is dense

2. Every non-empty open subset is non-meager

3. If {Ai}∞i=1 are subsets of X with A◦
i = ∅, then( ∞⋃

i=1

Ui

)◦

= ∅

4. If {Ui}∞i=1 are dense open subsets of X, then
⋂∞
i=1 Ui is dense.

Proof. 1 =⇒ 2. Let U ⊆ X be a non-empty open set. For any x0 ∈ U , by definition of
openness, there is δ > 0 s.t. Bδ(x0) ⊆ U , then Bδ(x0) ∩ U c = ∅, which implies U c is not
dense. By statement 1, U c is not residual, thus not meager.
2 =⇒ 3

3 =⇒ 4

4 =⇒ 1

Theorem 1.7.4 (Baire category theorem). Let (X, d) be a complete metric space. Then
1 ∼ 4 in Lemma 1.7.3 hold and
5. Every residual subset is non-meager
holds.

Proof. 2 =⇒ 5. Let R ⊆ X be residual, then by definition, Rc is meager. If R is meager too,
then by Lemma 1.7.2, R∪Rc = X is also meager, however by Statement 2, X is a non-empty
open set and thus non-meager.
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Completeness =⇒ 4. Step (1). Let {Ui}∞i=1 be a sequence of dense open subsets of X. By
definition of “dense”, we can take x0 ∈ X and ε0 > 0 s.t.

Bε0(x0) ∩ U1 6= ∅. (1.1)

Then take x1 ∈ Bε0(x0) ∩ U1, since Bε0(x0) ∩ U1 is open, there is 0 < ε1 <
1

2
1 s.t.

Bε1(x1) ⊆ Bε0(x0) ∩ U1.

By definition of “dense” again, we have Bε1(x1) ∩ U2 is non-empty, which is also open, thus
we can find x2 ∈ Bε1(x1) ∩ U2 and ε2 with 0 < ε1 <

1

4
s.t.

Bε2(x2) ⊆ Bε1(x1) ∩ U2 ⊆ U1 ∩ U2.

Inductively, for any k ∈ Z+, we can find xk ∈ X and εk ∈ R s.t.

0 < εk <
1

2k
, Bεk(xk) ⊆

k⋂
j=1

Uj , and Bεk(xk) ⊆ Bεj(xj) ∀0 ≤ j ≤ k.

(The choice of the sequence {xk}∞k=1 requires the axiom of dependent choice.)
Step (2). {xk}∞k=1 is Cauchy. (why?)
Step (3). By Step (2) and completeness of X, there is x∞ ∈ X s.t. xk → x∞. We have
(why?)

x∞ ∈ Bεk(xk) and x∞ ∈ Uk, ∀k ∈ Z≥0.

Therefore

x∞ ∈

( ∞⋂
k=1

Uk

)
∩Bε0(x0).

Since x0 and ε0 are chosen arbitrarily, we conclude that
⋂∞
k=1 Uk is dense.

1If ε1 ≥
1

2
, any ball with radius ≤ ε1 also satisfies the following condition.
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Chapter 2

Principles of functional analysis

2.1 Uniform boundedness principle

Definition 2.1.1. Suppose X is a set, {Yi}i∈I is a sequence of normed vector spaces with
the index set I, the function sequence {fi}i∈I with fi : X → Yi is called pointwise bounded
if for any x ∈ X,

sup
i∈I

‖fi(x)‖Yi
<∞.

Theorem 2.1.2 (Uniform boundedness principle). Suppose X is a Banach space, {Yi}i∈I
is a sequence of normed vector spaces, Ai ∈ L(X,Yi) for each i ∈ I. Suppose {Ai}i∈I is
pointwise bounded, then

sup
i∈I

‖Ai‖ <∞.

The proof of Theorem 2.1.2 needs the following lemma.

Lemma 2.1.3. Suppose (X, d) is a complete, non-empty metric space. For each i ∈ I,
fi : X → R is continuous. If {fi}∞i=1 is pointwise bounded, then there is x0 ∈ X and ε > 0

s.t.
sup
i∈I

sup
x∈Bε(x0)

|fi(x)| <∞.

Proof. 1. For any i ∈ I and n ∈ Z+, define

Fn,i := {x ∈ X : |fi(x)| ≤ n},

which is a closed set, thus

Fn :=
⋂
i∈I

Fn,i = {x ∈ X : sup
i∈I

|fi(x)| ≤ n}

is also closed. For any x ∈ X, by pointwise boundedness, there is N ∈ Z+ s.t.

sup
i∈I

|fi(x)| ≤ N,
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thus x ∈ FN and then

X ⊆
∞⋃
n=1

Fn ⊆ X,

i.e. X =
⋃∞
n=1 Fn.

2. Since X is non-empty, X is residual, then by Baire category theorem (1.7.4) and com-
pleteness, X is non-meager. By the definition of “non-meager”, not all Fn is nowhere dense.
Suppose Fm is not a nowhere dense set, since Fm is closed,

∅ 6= (Fm)
◦ = (Fm)

◦,

which means Fm contains a non-empty open set. Then there is x0 ∈ Fm and ε0 > 0 s.t.
Bε0(x0) ⊆ Fm. Therefore, for any x ∈ Bε0(x0),

sup
i∈I

|fi(x)| ≤ m,

then change the order of two sup, we have

sup
i∈I

sup
x∈Bε0(x0)

|fi(x)| = sup
x∈Bε0(x0)

sup
i∈I

|fi(x)| ≤ m <∞.

Proof of Theorem 2.1.2. Step 1. For each i ∈ I, define fi : X → R by fi(x) = ‖Ai(x)‖Yi
,

∀x ∈ X. Then fi is continuous since Ai and the norm are both continuous. Since {Ai}i∈I is
pointwise bounded, {fi}i∈I is also pointwise bounded. By Lemma 2.1.3, there is x0 ∈ X and
ε > 0 s.t.

M := sup
i∈I

sup
x∈Bε(x0)

‖Ai(x)‖Yi
= sup

i∈I
sup

x∈Bε(x0)

|fi(x)| <∞.

Step 2. Let w ∈ X with ‖w‖X = 1, then

‖Ai(w)‖Yi
=

1

ε

∥∥∥A[(x0 + ε

2
w)− (x0 −

ε

2
w)]
∥∥∥
Yi

≤ 1

ε

∥∥∥A(x0 + ε

2
w)
∥∥∥
Yi

+
1

ε

∥∥∥A(x0 − ε

2
w)
∥∥∥
Yi

≤ 2M

ε
=

2M

ε
‖w‖X ,

thus ‖Ai‖ ≤ 2M/ε for all i ∈ I.

Example 2.1.4. If a real sequence a := {an}∞n=1 satisfies

{anxn}∞n=1 ∈ c0

for all {xn}∞n=1 ∈ c0, then a ∈ ℓ∞.
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Proof. Define ϕ : c0 → c0 by
{xn}∞n=1 7→ {anxn}∞n=1,

then ϕ ∈ L(c0, c0). Define ϕm : c0 → c0 by

{xn}∞n=1 7→ (a1x1, · · · , amxm, 0, 0, · · · ).

Definition 2.1.5. Suppose X,Y are normed vector spaces and {Ai}∞i=1 ⊆ L(X,Y ). {Ai}∞i=1

is said to converge strongly to A ∈ L(X,Y ) if for any x ∈ X,

Ax = lim
i→∞

Aix.

Theorem 2.1.6 (Banach-Steinhaus). Suppose X,Y are Banach spaces and {Ai}∞i=1 ⊆ L(X,Y ).
TFAE

1. For any x ∈ X, {Aix}∞i=1 is a convergent sequence.

2. supi≥1 ‖Ai‖ < ∞ and there is a dense subset D ⊆ X s.t. for any x ∈ D, {Aix}∞i=1 is
Cauchy.

3. supi≥1 ‖Ai‖ <∞ and there is A ∈ L(X,Y ) s.t. Ai → A strongly and

‖A‖ ≤ lim inf
i→∞

‖Ai‖ .

Proof. 1 =⇒ 3. Suppose for any x ∈ X, {Aix}∞i=1 is convergent, then {‖Aix‖Y }∞i=1 is bounded,
i.e. {Ai}∞i=1 is pointwise bounded, then by the Uniform boundedness principle,

sup
i≥1

‖Ai‖ <∞.

Define Ax = limi→∞Aix, then by the continuity of ‖·‖,

‖Ax‖Y = lim
i→∞

‖Aix‖Y = lim inf
i→∞

‖Aix‖Y ≤ lim inf
i→∞

‖Ai‖ · ‖x‖X ≤ sup
i≥1

‖Ai‖ · ‖x‖X ,

i.e. A is bounded. And A is also linear, thus A ∈ L(X,Y ), Ai → A strongly and

‖A‖ ≤ lim inf
i→∞

‖Ai‖ .

2 =⇒ 1. Fix x ∈ X, we want to show {Aix}∞i=1 is Cauchy in Y . Since D is dense in X, there
is {xk}∞k=1 ⊆ D s.t. xk → x. Notice that

‖Amx− Anx‖Y = ‖Am(x− xk)− An(x− xk) + Amxk − Anxk‖Y
≤ ‖(Am − An)(x− xk)‖Y + ‖Amxk − Anxk‖Y
≤ ‖Am − An‖ ‖x− xk‖X + ‖Amxk − Anxk‖Y
≤ (‖Am‖+ ‖An‖) ‖x− xk‖X + ‖Amxk − Anxk‖Y
≤ 2(sup

i≥1
‖Ai‖) ‖x− xk‖X + ‖Amxk − Anxk‖Y .
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Since xk → x, for any ε > 0, there is N1 ∈ Z+ s.t. for all k ≥ N1, we have

‖x− xk‖X <
ε

4(supi≥1 ‖Ai‖)
.

Then choose a k ≥ N , since {Aixk}∞i=1 is Cauchy, there is N2 ∈ Z+ s.t. for all m,n ≥ N2,

‖Amxk − Anxk‖Y <
ε

2
.

Therefore ‖Amx− Anx‖Y < ε, i.e. {Aix}∞i=1 is Cauchy and hence convergent.

Corollary 2.1.7 (Bilinear map). Suppose X,Y, Z are Banach spaces and B : X × Y → Z is
a bilinear map. TFAE

1. B is bounded, i.e. there is c ≥ 0 s.t.

‖B(x, y)‖Z ≤ c ‖x‖X ‖y‖Y , ∀x ∈ X, y ∈ Y.

2. B is continuous.

3. For any x ∈ X, B(x, ·) : Y → Z is continuous, and for any y ∈ Y , B(·, y) : X → Z is
continuous.

Proof. 1 =⇒ 2. Locally Lipschitz.
2 =⇒ 3. Clear.
3 =⇒ 1. Assume (3) holds. For any y ∈ Y , define Fy : X → Z by Fy(·) = B(·, y). For any
x ∈ X, define Gx : Y → Z by Gx(·) = B(x, ·). Since Gx is continuous, there exist cx ≥ 0 s.t.

‖Gx(·)‖Z ≤ cx ‖·‖Y .

Let I = {y ∈ Y : ‖y‖Y = 1}, then for any x ∈ X,

sup
y∈I

‖Fy(x)‖Z = sup
y∈I

‖B(x, y)‖Z = sup
y∈I

‖Gx(y)‖Z ≤ cx <∞,

applying Uniform boundedness principle (2.1.2), we have

c := sup
y∈I

‖Fy‖ <∞.

Then for all y ∈ I,
‖Fy(x)‖Z ≤ c ‖x‖X , ∀x ∈ X.

For any x ∈ X, y ∈ Y ,

‖B(x, y)‖Z = ‖y‖Y B(x,
y

‖y‖Y
) ≤ c ‖x‖X ‖y‖Y .
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2.2 Open mapping theorem

Definition 2.2.1. Suppose (X, dX) and (Y, dY ) are two metric spaces. f : X → Y is called
open if for any open set U ⊆ X, f(U) is open in Y .

Theorem 2.2.2 (open mapping theorem). Suppose X and Y are Banach spaces. Let A ∈
L(X,Y ) be surjective, then A is open.

We need two lemmas to prove Theorem 2.2.2.

Lemma 2.2.3. Suppose X and Y are Banach spaces. Let A ∈ L(X,Y ) be surjective, then
there is δ > 0 s.t.

BY
δ (0) ⊆ A[BX

1 (0)].

Proof. Step 0. For any subset W of a vector space and λ ∈ R, define the scaled set as

λW := {λy : y ∈ W}.

Step 1. Then

X =

∞⋃
n=1

BX
n (0) =

∞⋃
n=1

nBX
1 (0).

Surjectivity of A implies

Y = A(X) = A

( ∞⋃
n=1

nBX
1 (0)

)
=

∞⋃
n=1

A[nBX
1 (0)] =

∞⋃
n=1

nA[BX
1 (0)].

Step 2. Since Y is residual and complete, Baire category theorem (1.7.4) implies Y is non-
meager. Then there is n0 ∈ Z+ s.t. n0A[BX

1 (0)] is not nowhere dense, i.e.(
n0A[BX

1 (0)]
)◦

6= ∅,

scaling the set, we have (
1

2
A[BX

1 (0)]

)◦
6= ∅.

Then there is y0 ∈ Y and δ > 0 s.t.

BY
δ (y0) ⊆

(
1

2
A[BX

1 (0)]

)◦
⊆ 1

2
A[BX

1 (0)].

Step 3. BY
δ (0) ⊆ A[BX

1 (0)].
Fix y ∈ BY

δ (0) i.e. ‖y‖Y < δ. Then

y0 + y ⊆ BY
δ (y0) ⊆

1

2
A[BX

1 (0)], y0 ⊆
1

2
A[BX

1 (0)].
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By the definition of closure, there exist sequences {xi}∞i=1, {x′i}∞i=1 ⊆
1

2
BX
1 (0) s.t.

x′i → y + y0, xi → y0.

Since ‖x′i − xi‖X ≤ ‖xi‖X + ‖x′i‖X < 1, i.e. x′i − xi ∈ BX
1 (0), we have

A(x′i − xi) ∈ A[BX
1 (0)],

then
y = lim

i→∞
A(x′i − xi) ∈ A[BX

1 (0)].

The lemma is now proved.

Lemma 2.2.4. Suppose X and Y are Banach spaces and A ∈ L(X,Y ). If

BY
δ (0) ⊆ A[BX

1 (0)] for some δ > 0,

then
BY
δ (0) ⊆ A[BX

1 (0)].

Proof. Step 1. For any y ∈ Y ,
δy

‖y‖Y
∈ BY

δ (0) ⊆ A[BX
1 (0)],

thus
y ∈ A[BX

∥y∥Y /δ
(0)].

Step 2. Let y ∈ BY
δ (0), then y ∈ A[BX

∥y∥Y /δ
(0)], by the definition of closure1, let ε :=

δ − ‖y‖Y > 0, there is x0 ∈ BX
∥y∥Y /δ(0) (i.e. ‖x0‖X < ‖y‖Y /δ) s.t.

‖y − Ax0‖Y <
ε

2
,

i.e. y − Ax0 ∈ BY
ε/2(0), rescale the vector, we have

δ(y − Ax0)

ε/2
∈ BY

δ (0).

Repeat the previous procedure, there is x̃1 ∈ BX
1 (0), s.t.∥∥∥∥δ(y − Ax0)

ε/2
− Ax̃1

∥∥∥∥
Y

<
δ

2
,

rescale the vector, we have∥∥∥∥y − Ax0 − A
εx̃1
2δ

∥∥∥∥
Y

= ‖y − Ax0 − Ax1‖Y <
ε

4
,

1If x ∈ S, then for any r > 0, there is s ∈ S, s.t. d(x, s) < r.
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where x1 =
εx̃1
2δ

and ‖x1‖X <
ε

2δ
.

Step 3. Suppose we have found {xj}kj=0 ⊆ X s.t.∥∥∥∥∥∥y − A

k∑
j=0

xj

∥∥∥∥∥∥
Y

<
ε

2k+1
, with ‖xj‖X <

ε

δ2j
. (2.1)

Then
δ2k+1(y − A

∑k
j=0 xj)

ε
∈ BY

δ (0),

so there is x̃k+1 ∈ BX
1 (0) s.t.∥∥∥∥∥δ2k+1(y − A

∑k
j=0 xj)

ε
− x̃k+1

∥∥∥∥∥
Y

<
δ

2
,

then ∥∥∥∥∥∥y − A

k∑
j=0

xj −
εx̃k+1

δ2k+1

∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥y − A

k∑
j=0

xj − xk+1

∥∥∥∥∥∥
Y

<
ε

2k+2
,

where xk+1 =
εx̃k+1

δ2k+1
and ‖xk+1‖X <

ε

δ2k+1
. Therefore (2.1) holds for all k ∈ Z+.

Step 4. Let k → ∞, we have

y = A

∞∑
j=0

xj = Ax∗

where we let x∗ =
∑∞

j=0 xj. Since

‖x∗‖X =

∥∥∥∥∥∥
∞∑
j=0

xj

∥∥∥∥∥∥
X

≤
∞∑
j=0

‖xj‖X = ‖x0‖X+
∞∑
j=1

‖xj‖X <
‖y‖Y
δ

+
ε

δ

∞∑
j=1

1

2j
=

‖y‖Y
δ

+
δ − ‖y‖Y

δ
< 1,

we have x∗ ∈ BX
1 (0) and hence y ∈ A[BX

1 (0)].

Next, we will prove the Open mapping theorem 2.2.2.

Proof of theorem 2.2.2. Suppose A ∈ L(X,Y ) and A is surjective, then from Lemma 2.2.3
and 2.2.4, there is δ > 0 s.t.

BY
δ (0) ⊆ A[BX

1 (0)].

Let U ⊆ X be an open set, we want to show A(U) is also open. For any y0 ∈ A(U), there is
x0 ∈ U s.t. y0 = Ax0. Since U is open, there is ε > 0 s.t. Bε(x0) ⊆ U .
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Claim. BY
εδ(y0) ⊆ A(U).

Let y ∈ BY
εδ(y0), then

y − y0
ε

∈ BY
δ (0) ⊆ A[BX

1 (0)].

Then there is x1 ∈ BX
1 (0) s.t.

Ax1 =
y − y0
ε

,

i.e. y = εAx1 + y0 = A(x0 + εx1), where x0 + εx1 ∈ BX
ε (x0). Now the claim is proved. Then

for any element in A(U), we can find an open ball around that element and contained in
A(U), i.e. A(U) is open.

Corollary 2.2.5. Let X,Y be Banach spaces, A ∈ L(X,Y ) be surjective. Let δ > 0 s.t.
BY
δ (0) ⊆ A[BX

1 (0)]. Then for any y ∈ Y ,

inf
x∈X,Ax=y

‖x‖X ≤
‖y‖Y
δ

.

Proof. Fix y ∈ Y . For any C ∈ R s.t. C > ‖y‖Y /δ, we have
‖y‖Y
C

< δ,

then y/C ∈ BY
δ (0), by the hypothesis,

y

C
∈ A[BX

1 (0)].

Then there is x̃ ∈ BX
1 (0) s.t.

y

C
= Ax̃.

Let x = Cx̃, y = Ax and ‖x‖X = c ‖x̃‖X < C. We complete the proof since C is arbitrary.

Corollary 2.2.6 (Inverse operator). Let X,Y be Banach spaces, A ∈ L(X,Y ) be bijective.
Then A is invertible.

Proof. Bijectivity implies A−1 exists, We need to show A−1 is linear and continuous.
A−1 is linear: for any u, v ∈ Y and c ∈ R,

A−1(cu+ v) = A−1[cAA−1u+ AA−1v] = A−1A(cA−1u+ A−1v) = cA−1u+ A−1v.

A−1 : Y → X is continuous: for any open set U ∈ X, by the Open mapping theorem (2.2.2),
(A−1)−1(U) = A(U) is also open. Thus A−1 is continuous.

Corollary 2.2.7. Let X be a Banach space, X1, X2 be closed subspaces of X s.t.

X = X1 ⊕X2.

Then there is c > 0 s.t. for any x1, x2 ∈ X,

‖x1‖+ ‖x2‖ ≤ c ‖x1 + x2‖ .
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Proof. X1 and X2 are both Banach spaces, easy to check X1 ×X2 is also Banach w.r.t. the
product norm defined by

‖(x, y)‖ = ‖x1‖+ ‖x2‖ , ∀(x1, x2) ∈ X1 ×X2.

Define A : X1×X2 → X by A((x1, x2)) = x1+x2, ∀(x1, x2) ∈ X1×X2. A is clearly linear and
bounded. Moreover A is bijective: (i) A is injective, because 0 can be uniquely expressed,
hence 0 = x1 + x2 with x1 ∈ X1, x2 ∈ X2 has the only solution x1 = x2 = 0, i.e. KerA = {0}.
(ii) A is surjective because every element in X can be expressed as x = x1+ x2 with x1 ∈ X1

and x2 ∈ X2.
Therefore A−1 is also bounded by Corollary 2.2.6. By definition of boundedness, there is
c > 0, s.t. for any x ∈ X, we have ∥∥A−1x

∥∥ ≤ c ‖x‖ ,

let x = x1 + x2 with x1 ∈ X1, x2 ∈ X2, then ‖x1‖+ ‖x2‖ ≤ c ‖x1 + x2‖.

2.3 Closed graph theorem

Definition 2.3.1. Suppose X,Y are Banach spaces and U is a subspace of X. Let A : U → Y

be linear (not necessarily be bounded), and write dom(A) = U .

1. Define the product norm on X × Y by

‖(x, y)‖ = ‖x‖X + ‖y‖Y , ∀(x, y) ∈ X × Y.

Easy to check (X × Y, ‖·‖) is Banach.

2. We say A is closed if its graph

ΓA := {(x,Ax) : x ∈ dom(A)} ⊆ X × Y

is closed (w.r.t. the topology induced by the product norm).

3. ΓA induces a norm on dom(A) called the graph norm, defined by

‖x‖ΓA
:= ‖x‖X + ‖Ax‖Y , ∀x ∈ dom(A).

Then (dom(A), ‖·‖ΓA
) is a normed vector space.

Remark. 1. {(xk, yk)}∞k=1 is a Cauchy sequence in X ×Y if and only if {xk}∞k=1 is Cauchy
in X and {yk}∞k=1 is Cauchy in Y .

2. If we endow dom(A) with the graph norm, then A : (dom(A), ‖·‖ΓA
) → Y is bounded.
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Theorem 2.3.2 (Closed graph theorem). Let X,Y be Banach spaces, A : X → Y be linear.
Then A is bounded if and only if ΓA is closed in X × Y .

Proof. =⇒: Suppose A ∈ L(X,Y ). For any convergent sequence {(xn, Axn)}∞n=1 ⊆ ΓA, let its
limit be (x∞, y∞) ∈ X × Y . We want to show (x∞, y∞) ∈ ΓA, i.e. y∞ = Ax∞. Easy to check
xn → x∞ and Axn → y∞. Since A is bounded hence continuous, we have

y∞ = lim
n→∞

Axn = A( lim
n→∞

xn) = Ax∞.

⇐=: Suppose ΓA is closed. Then ΓA is Banach w.r.t. the product norm. Define the
projection map π : ΓA → X by (x,Ax) 7→ x. Easy to check π is bijective and bounded, thus
by Corollary 2.2.6, π−1 is bounded. Then there is c ≥ 0, s.t.

‖x‖X + ‖Ax‖Y = ‖(x,Ax)‖ =
∥∥π−1(x)

∥∥ ≤ c ‖x‖X ,

therefore ‖Ax‖Y ≤ (c− 1) ‖x‖X , take c′ = max{c− 1, 0} ≥ 0, then ‖Ax‖Y ≤ c′ ‖x‖X , i.e. A is
bounded.

Corollary 2.3.3 (Hellinger–Toeplitz theorem). Let H be a R-Hilbert space. Let A : H → H

be linear and symmetric i.e. 〈Ax, y〉 = 〈x,Ay〉 for any x, y ∈ H. Then A is bounded.

Proof. By Theorem 2.3.2, it suffices to show ΓA is closed in H×H. Suppose {(xn, Axn)}∞n=1 ⊆
ΓA converges to (x∞, y∞), we want to show y∞ = Ax∞. For any z ∈ H, since A is symmetric,
we have

〈Ax∞, z〉 = 〈x∞, Az〉 = lim
n→∞

〈xn, Az〉 = lim
n→∞

〈Axn, z〉 = 〈y∞, z〉,

then 〈Ax∞ − y∞, z〉 = 0. Let z = Ax∞ − y∞, we have Ax∞ = y∞.

Definition 2.3.4 (Closeable operator). Suppose X,Y are Banach spaces, let dom(A) ⊆ X

be a subspace and A : dom(A) → Y be linear. A is called closeable if there is a closed linear
operator Ã : dom(Ã) → Y s.t.

dom(A) ⊆ dom(Ã), Ã
∣∣
dom(A)

= A.

Remark. The extension Ã is closed, thus it is continuous by Theorem 2.3.2.

Lemma 2.3.5. Suppose X,Y are Banach spaces, let dom(A) ⊆ X be a subspace and A :

dom(A) → Y be linear. TFAE:

1. A is closeable

2. The projection πX : ΓA → X is injective

3. Suppose there is a sequence {xn}∞n=1 ⊆ dom(A) and y ∈ Y s.t.

lim
n→∞

xn = 0, lim
n→∞

Axn = y,

then y = 0.
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Proof. 1 =⇒ 3. Since Ã is continuous, we have

y = lim
n→∞

Axn = lim
n→∞

Ãxn = Ã( lim
n→∞

xn) = Ã0 = 0.

3 =⇒ 2. First, ΓA is a subspace of X since the closure of a subspace is still a subspace
(addition and multiplication are continuous). Second, consider the kernel of π,

Ker (π) = {(x, y) ∈ ΓA : x = 0}.

For any (x, y) ∈ ΓA with x = 0, there is a sequence (xi, Axi) ∈ ΓA s.t. (xi, Axi) → (0, y), i.e.
xi → 0 and Axi → y. From 2 we have y = 0, therefore Ker (π) = {(0, 0)} and hence π is
injective.
2 =⇒ 1.

2.4 Hahn-Banach theorem

Definition 2.4.1. Suppose X is a real vector space. A function p : X → R is called a
quasi-semi-norm (q-s-norm) if for any x, y ∈ X

1. p(λx) = λp(x), ∀λ ∈ [0,∞)

2. p(x+ y) ≤ p(x) + p(y).

A function p : X → R is called a semi-norm if it is a q-s-norm satisfying

p(λx) = |λ|p(v), ∀λ ∈ R.

Remark. A q-s-norm is not necessarily non-negative, but a semi-norm is always non-negative
since for any x ∈ X, 2p(x) = p(x) + p(−x) ≥ p(0) = 0.

Theorem 2.4.2 (Hahn-Banach). Suppose X is a vector space and p : X → R is a q-s-norm.
If there is a subspace Y ⊆ X and a linear map ϕ : Y → R s.t.

ϕ(y) ≤ p(y), ∀y ∈ Y,

then there is a linear map ψ : X → R s.t. ψ|Y = ϕ on Y and

ψ(x) ≤ p(x), ∀x ∈ X.

Lemma 2.4.3. Suppose X is a vector space and p : X → R is a q-s-norm. If there is a
proper subspace Y ⊊ X and a linear map ϕ : Y → R s.t.

ϕ(y) ≤ p(y), ∀y ∈ Y,

then for any x0 ∈ X \ Y , there is a linear map ψ : Y ⊕ Span(x0) → R s.t. ψ|Y = ϕ and

ψ(x) ≤ p(x), ∀x ∈ Y ⊕ Span(x0).
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Proof. If such ψ exists, for any y + λx0 ∈ Y ⊕ Span(x0) where y ∈ Y, λ ∈ R,

ψ(y + λx0) = ψ(y) + λψ(x0) = ϕ(y) + λψ(x0),

therefore ψ is determined by ψ(x0). Our goal is to find suitable ψ(x0) s.t.

ϕ(y) + λψ(x0) = ψ(y + λx0) ≤ p(y + λx0), ∀y ∈ Y, λ ∈ R. (2.2)

Easy to check (2.2) is equivalent to

ϕ(y) + ψ(x0) ≤ p(y + x0) and ϕ(y)− ψ(x0) ≤ p(y − x0), ∀y ∈ Y,

i.e.
ϕ(y)− p(y − x0) ≤ ψ(x0) ≤ p(y + x0)− ϕ(y), ∀y ∈ Y.

For any y1, y2 ∈ Y , we have

ϕ(y1) + ϕ(y2) = ϕ(y1 + y2)

≤ p(y1 + y2)

= p(y1 − x0 + y2 + x0)

≤ p(y1 − x0) + p(y2 + x0),

thus
ϕ(y1)− p(y1 − x0) ≤ p(y2 + x0)− ϕ(y2), ∀y1, y2 ∈ Y.

Let
c1 = sup

y∈Y
[ϕ(y)− p(y − x0)], c2 = inf

y∈Y
[p(y + x0)− ϕ(y)],

we have c1 ≤ c2, so we can always choose c ∈ [c1, c2] and let ψ(x0) = c.

Proof of Theorem 2.4.2. Define the set

P = {(Z, ψ) : Y ⊆ Z ⊆ X; ψ : Z → R is linear s.t. ϕ = ψ
∣∣
Y
, ψ(z) ≤ p(z), ∀z ∈ Z.}

Define a partial order � on P by (Z, ψ) � (Z ′, ψ′) if

Z ⊆ Z ′, ψ = ψ′∣∣
Z
.

Let C ⊆ P be a chain, define (ZC , ψC) by

ZC =
⋃

(Z,ψ)∈C

Z, ψC = ψ(x), ∀x ∈ Z with (Z, ψ) ∈ C.

Then (ZC , ψC) ∈ P and for any (Z, ψ) ∈ C, we have (Z, ψ) � (ZC , ψC), i.e. (ZC , ψC) is
an upper bound for the chain C. By Zorn’s lemma (A.1.3), there is a maximal element
(Zm, ψm) ∈ P , i.e. there is no other element m′ ∈ P s.t. m′ 6= m and m � m′.
Claim: Zm = X.
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Otherwise, assume Zm ⊊ X, by Lemma 2.4.3, there is x0 ∈ X\Zm and ψ : Zm⊕Span(x0) → R
s.t. (Zm ⊕ Span(x0), ψ) ∈ P and

(Zm, ψm) � (Zm ⊕ Span(x0), ψ),

which contradicts (Zm, ψm) is a maximal element.

Corollary 2.4.4. Let X be a normed vector space, Y ⊆ X be a subspace. If ϕ ∈ Y ∗, then
there is ψ ∈ X∗ s.t. ψ|Y = ϕ and ‖ψ‖ = ‖ϕ‖.

Proof. Let p(x) = ‖ϕ‖ · ‖x‖. Then p is a norm, and

ϕ(x) ≤ |ϕ(x)| ≤ ‖ϕ‖ · ‖x‖ = p(x), ∀x ∈ Y.

By Hahn-Banach theorem, there is a linear map ψ : X → R s.t. ψ|Y = ϕ and

ψ(x) ≤ p(x) = ‖ϕ‖ · ‖x‖ , ∀x ∈ X.

thus |ψ(x)| ≤ ‖ϕ‖ · ‖x‖, ∀x ∈ X, which implies ψ is bounded and ‖ψ‖ ≤ ‖ϕ‖. Since

‖ϕ‖ = sup
x∈Y \{0}

|ϕ(x)|
‖x‖

= sup
x∈Y \{0}

|ψ(x)|
‖x‖

≤ sup
x∈X\{0}

|ψ(x)|
‖x‖

= ‖ψ‖ ,

we conclude that ‖ϕ‖ = ‖ψ‖.

Corollary 2.4.5. Let X be a normed vector space, for any x0 ∈ X \ {0}, there is ψ ∈ X∗

s.t. ‖ψ‖ = 1 and ψ(x0) = ‖x0‖.

Proof. Let Y = Span(x0). Define ϕ : Y → R by

ϕ(x) = ϕ(tx0) = t ‖x0‖ , ∀x = tx0 ∈ Y.

Easy to check ϕ ∈ Y ∗, ϕ(x0) = ‖x0‖ and ‖ϕ‖ = 1. By Corollary 2.4.4, there is ψ ∈ X∗ s.t.
ψ|Y = ϕ and ‖ψ‖ = ‖ϕ‖ = 1. Since x0 ∈ Y , ψ(x0) = ϕ(x0) = ‖x0‖.

Corollary 2.4.6. Let X be a normed vector space, then X∗ separate points on X, i.e. for
any x, y ∈ X with x 6= y, there is ϕ ∈ X∗, s.t. ϕ(x) 6= ϕ(y).

Proof. Let x, y ∈ X with x 6= y. Then x− y 6= 0, by Corollary 2.4.5, there is ψ ∈ X∗ s.t.

ψ(x)− ψ(y) = ψ(x− y) = ‖x− y‖ 6= 0.

2.5 Separation of convex sets

In this section, we will introduce another important application of Hahn-Banach theorem.
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Theorem 2.5.1 (Separation of convex sets). Let X be a real normed vector space, A,B be
non-empty, disjoint convex subsets of X with B◦ 6= ∅. Then there is Λ ∈ X∗ \ {0} and c ∈ R
s.t.

Λ(a) ≤ c ≤ Λ(b), ∀a ∈ A, b ∈ B,

and
Λ(a) ≤ c < Λ(b), ∀a ∈ A, b ∈ B◦.

Before proving Theorem 2.5.1, we will introduce some definitions and lemmas.

Lemma 2.5.2. Let X be a normed vector space, u, v ∈ X, r1, r2 > 0, a, b ≥ 0. Then

aBr1(u) + bBr2(v) = Bar1+br2(au+ bv).

Proof. 1. For any x ∈ aBr1(u) + bBr2(v), x = ax1 + bx2 where x1, x2 ∈ X s.t.

‖x1 − u‖ < r1, ‖x2 − v‖ < r2.

Therefore
‖x− (au+ bv)‖ ≤ a ‖x1 − u‖+ b ‖x2 − v‖ < ar1 + br2,

i.e. x ∈ Bar1+br2(au+ bv).
2. For any x ∈ Bar1+br2(au + bv), let x = au + bv + y, where ‖y‖ < ar1 + br2. Then we can
write x as

x = au+
ar1

ar1 + br2
y + bv +

br2
ar1 + br2

y.

Since ∥∥∥∥u+ r1
ar1 + br2

y − u

∥∥∥∥ =
r1

ar1 + br2
‖y‖ < r1,

we have
u+

r1
ar1 + br2

y ∈ Br1(u).

Similarly,
v +

r2
ar1 + br2

y ∈ Br2(v),

therefore x ∈ aBr1(u) + bBr2(v).

Lemma 2.5.3. Suppose X is a normed vector space and A ⊆ X is convex. Then

1. A◦ and A are convex.

2. If A◦ 6= ∅, then A ⊆ A◦.

Proof. 1. For any u, v ∈ A◦, there are open balls Bε(u), Bε(v) ⊆ A◦. By convexity of A, for
any t ∈ [0, 1],

tBε(u) + (1− t)Bε(v) ⊆ A.
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On the other hand, by Lemma 2.5.2,

tBε(u) + (1− t)Bε(v) = Bε(tu+ (1− t)v),

which is open, thus
tBε(u) + (1− t)Bε(v) ⊆ A◦,

in particular, tu+ (1− t)v ∈ A◦, i.e. A◦ is convex.
Next, we will show A is convex. For any u, v ∈ A, there is sequences {ui}∞i=1, {vi}∞i=1 ⊆ A s.t.

ui → u, vi → v.

Let t ∈ [0, 1], since A is convex, for each i,

tui + (1− t)vi ∈ A,

then
tu+ (1− t)v = lim

i→∞
[tui + (1− t)vi] ∈ A.

2. Fix x0 ∈ A◦, since A◦ is open, there is Bε(x0) ⊆ A◦. For any x ∈ A and t ∈ (0, 1), since A
is convex,

tx+ (1− t)Bε(x0) ⊆ A.

Moreover, by Lemma 2.5.2, tx+ (1− t)Bε(x0) = B(1−t)ε(tx+ (1− t)x0) is open, thus

tx+ (1− t)Bε(x0) ⊆ A◦.

Define
Ux =

⋃
0<t<1

[tx+ (1− t)Bε(x0)],

then Ux ⊆ A◦. And we can choose {yn}∞n=1 ⊆ Ux s.t. yn → x, for example, let

yn = (1− 1

n
)x+

x0
n
,

which implies x ∈ Ux ⊆ A◦.

Lemma 2.5.4. Suppose X is a normed vector space and A ⊆ X is convex s.t. A◦ 6= ∅. If
there is Λ ∈ X∗ \ {0} and c ∈ R s.t.

Λ(x) ≥ c, ∀x ∈ A◦,

then
Λ(x) ≥ c, ∀x ∈ A,

and
Λ(x) > c, ∀x ∈ A◦.
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Proof. From Lemma 2.5.3, A ⊆ A◦, thus for any x ∈ A, there is a sequence {xi}∞i=1 ⊆ A◦ s.t.
xi → x. By the continuity of Λ,

Λ(x) = lim
i→∞

Λ(xi) ≥ c.

For the second statement, let x ∈ A◦. We can find x0 ∈ X s.t. Λ(x0) = 1, for example,
choose y ∈ X \ {0} s.t. Λy 6= 0, let x0 = y/ ‖Λy‖. Since A◦ is open, there is an open ball
Bδ(x) ⊆ A◦ with δ > 0. And then x− δx0

2
∈ Bδ(x) ⊆ A◦ because∥∥∥∥x− δx0

2
− x

∥∥∥∥ =
δ

2
‖x0‖ =

δ

2
< δ.

Therefore
Λ(x) = Λ(x− δ

2
x0) +

δ

2
Λ(x0) ≥ c+

δ

2
> c.

Definition 2.5.5 (Minkowski function). Suppose X is a real normed vector space and A ⊆ X

is convex s.t. 0 ∈ A. Define the Minkowski function ρA : X → [0,∞] by

ρA(x) = inf{t > 0 :
x

t
∈ A}, ∀x ∈ X.

Define inf∅ = ∞.

Remark. 1. ρA(0) = 0.
2. If x ∈ A, ρA(x) ≤ 1 because 1 ∈ {t > 0 : x/t ∈ A}.
3. If x /∈ A, ρA(x) ≥ 1. Assume ρA(x) < 1, there is δ > 0 s.t. ρA(x) < δ < 1, and by the
definition of inf, δ is no longer a lower bounded, i.e. there is t0 > 0 s.t. t0 < δ < 1 and
x/t0 ∈ A. Since A is convex, 0, x/t0 ∈ A, we have

x = (1− t0) · 0 + t0 ·
x

t0
∈ A.

Lemma 2.5.6. ρA defined above is a q-s-norm, i.e. for any x, y ∈ A and λ ∈ [0,∞),

1. ρA(λx) = λρA(x)

2. ρA(x+ y) ≤ ρA(x) + ρA(y).

Proof. 1. The case λ = 0 is clear. Assume λ > 0, by definition,

ρA(λx) = inf{t > 0 :
λx

t
∈ A} = inf{λ · ( t

λ
) > 0 :

x

t/λ
∈ A} = λρA(x).

2. For any t, s > 0 s.t. t > ρA(x), s > ρA(y), we have

ρA(
x

t
) < 1, ρA(

y

s
) < 1,
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then x/t, y/s ∈ A. Since A is convex, we have
x+ y

s+ t
=

t

s+ t
· x
t
+

s

s+ t
· y
s
∈ A,

then
ρA(

x+ y

s+ t
) ≤ 1, i.e. ρA(x+ y) ≤ s+ t.

For any ε > 0, let t = ρA(x) + ε, s = ρA(y) + ε, then

ρA(x+ y) ≤ ρA(x) + ρA(y) + 2ε,

since ε is arbitrary, we have
ρA(x+ y) ≤ ρA(x) + ρA(y).

Proof of Theorem 2.5.1. 1. Let A,B ⊆ X be non-empty disjoint convex subsets and B◦ 6= ∅.
Let M = A− B◦ := {a− b : a ∈ A, b ∈ B◦}.
2. Claim: M is convex.
Let x, y ∈ M , i.e. x = a1 − b1, y = a2 − b2 for some a1, a2 ∈ A and b1, b2 ∈ B◦. Then for any
t ∈ [0, 1],

tx+ (1− t)y = [ta1 + (1− t)a2]− [tb1 + (1− t)b2] ∈ A− B◦ =M,

because A and B◦ are convex by Lemma 2.5.3.
3. M is non-empty since A and B◦ are non-empty, then we can choose x0 ∈ M . Let
M0 =M −{x0}, then 0 ∈M0 and M0 is also convex. Thus we can define Minkowski function
on M0. Let p = ρM0

: X → [0,∞] be the Minkowski function. Since A ∩ B◦ = ∅, 0 /∈ M ,
then −x0 /∈M0, thus p(−x0) ≥ 1.
4. Let E0 = Span(x0). Define f0 ∈ E∗

0 by

f0(sx0) = −s, ∀s ∈ R.

In particular, f0(x0) = −1.
5. Claim: For any x ∈ E0, f0(x) ≤ p(x).
For any s ≤ 0, apply p(−x0) ≥ 1 and Lemma 2.5.6, we have

f0(sx0) = −s ≤ −sp(−x0) = p(sx0)

For any s > 0,
f0(sx0) = −s < 0 ≤ p(sx0),

because p is always non-negative.
6. Since p is a q-s-norm, by Step 5 and Hahn-Banach theorem, there is f ∈ X∗ s.t.

f
∣∣
E0

= f0, f(x) ≤ p(x) ∀x ∈ X.
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In particular, for any x ∈ M0, f(x) ≤ p(x) ≤ 1. And f(x0) = f0(x0) = −1. For any x ∈ M ,
x− x0 ∈M0, thus

f(x) = f(x− x0) + f(x0) = f(x− x0)− 1 ≤ 0.

7. Therefore, for any a ∈ A, b ∈ B◦, a− b ∈M , then

f(a)− f(b) = f(a− b) ≤ 0,

i.e. f(a) ≤ f(b). Let
c1 = sup

a∈A
f(a), c2 = inf

b∈B◦
f(b),

then c1 ≤ c2, choose c ∈ [c1, c2], we have

f(a) ≤ c ≤ f(b), ∀a ∈ A, b ∈ B◦.

8. From Lemma 2.5.4,
f(a) ≤ c ≤ f(b), ∀a ∈ A, b ∈ B,

and
f(a) ≤ c < f(b), ∀a ∈ A, b ∈ B◦.

2.6 Dual space and annihilator

Definition 2.6.1. Suppose X be a normed vector space, for any S ⊆ X, define the annihi-
lator of S to be

S⊥ = {φ ∈ X∗ : φ(a) = 0, ∀a ∈ S}.

Remark. 1. S⊥ is a subspace of X∗ no matter whether S is a subspace of X.
2. S⊥ is always closed. Suppose {ϕn}∞n=1 ⊆ S⊥ is convergent in X∗, i.e. there is ϕ ∈ X∗ s.t.
ϕn → ϕ. Then for any x ∈ X,

|ϕx| = |ϕnx− ϕx|+ |ϕnx| ≤ ‖ϕn − ϕ‖ · ‖x‖X → 0,

thus ϕ ∈ S⊥, and S⊥ is closed.
3. Since X∗ is always Banach (Theorem 1.4.1), any closed subspace of Banach space is also
Banach, so S⊥ is Banach.

Theorem 2.6.2. Suppose X is a normed vector space and Y ⊆ X is a subspace. Then for
any x0 ∈ X \ Y ,

d(x0, Y ) := inf
y∈Y

‖x0 − y‖X > 0

and there is ϕ ∈ Y ⊥ s.t.
‖ϕ‖ = 1, ϕ(x0) = d(x0, Y ).
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Proof. 1. Assume d(x0, Y ) = 0, by the definition of inf, there is a sequence {yn}∞n=1 ⊆ Y s.t.

d(x0, yn) <
1

n
,

thus yn → x0, which implies x0 ∈ Y , a contradiction!
2. Let δ := d(x0, Y ) > 0. we want to find such ϕ. Denote Z = Y ⊕ Span(x0), define ψ ∈ Z∗

by ψ(tx0) = δt, ∀t ∈ R, and ψ(y) = 0, ∀y ∈ Y . Then

‖ψ‖ = sup
y∈Y,t∈R\{0}

|ψ(y + tx0)|
‖y + tx0‖

= sup
y∈Y,t∈R\{0}

δ|t|
‖y + tx0‖

= sup
y∈Y,t∈R\{0}

δ

‖y/t+ x0‖

= sup
y′∈Y

δ

‖x0 − y′‖
(let y′ = −y/t)

=
δ

infy′∈Y ‖x0 − y′‖

=
δ

δ
= 1.

By Corollary 2.4.4, there is ϕ ∈ X∗ s.t.

‖ϕ‖ = ‖ψ‖ = 1, ϕ
∣∣
Z
= ψ.

Moreover, ϕ(x0) = ψ(x0) = δ, and for any y ∈ Y , ϕ(y) = ψ(y) = 0, i.e. ϕ ∈ Y ⊥.

Corollary 2.6.3. Suppose X is a normed vector space and Y ⊆ X is a subspace. Let x ∈ X,
then x ∈ Y if and only if

ϕ(x) = 0, ∀ϕ ∈ Y ⊥.

Proof. If x ∈ Y , then there is a sequence {yn}∞n=1 ⊆ Y s.t. yn → x. For any ϕ ∈ Y ⊥, by the
continuity of ϕ,

ϕ(x) = lim
n→∞

ϕ(yn) = 0.

On the other hand, if x /∈ Y , by Theorem 2.6.2, there is ϕ ∈ Y ⊥, s.t. ϕ(x) > 0.

Corollary 2.6.4. Suppose X is a normed vector space and Y ⊆ X is a subspace. Then Y is
dense in X, i.e. Y = X if and only if Y ⊥ = {0}.

Proof. By Corollary 2.6.3, X = Y if and only if for any x ∈ X and any ϕ ∈ Y ⊥,

ϕ(x) = 0,

which implies ϕ = 0, i.e. Y ⊥ = {0}.
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Corollary 2.6.5. Suppose X is a normed vector space and Y ⊆ X is a subspace. Then

1. The map [ϕ] 7→ ϕ|Y : X∗/Y ⊥ → Y ∗ is an isometric isomorphism.

2. If Y is a closed subspace and π : X → X/Y is the canonical projection defined by x 7→ x+Y ,
then the map ϕ 7→ ϕ ◦ π : (X/Y )∗ → Y ⊥ is an isometric isomorphism.

2.7 Reflexive space

Definition 2.7.1. Suppose X is a normed vector space. Denote the double dual of X as
X∗∗ = (X∗)∗. And define ιX : X → X∗∗ by

ιX(x)(ϕ) = ϕ(x), ∀x ∈ X,ϕ ∈ X∗.

Lemma 2.7.2. ιX : X → X∗∗ defined above is an isometric embedding.

Proof. First, for any x ∈ X,

‖ιX(x)‖X∗∗ = sup
ϕ∈X∗\{0}

|ιX(x)(ϕ)|
‖ϕ‖X∗

= sup
ϕ∈X∗\{0}

|ϕ(x)|
‖ϕ‖X∗

≤ sup
ϕ∈X∗\{0}

‖ϕ‖X∗ ‖x‖X
‖ϕ‖X∗

= ‖x‖X .

Second, by Corollary 2.4.5, for any x ∈ X, there is ϕ ∈ X∗ s.t.

‖ϕ‖X∗ = 1, ϕ(x) = ‖x‖X .

Then
‖x‖X = ϕ(x) = ιX(x)(ϕ) ≤ ‖ιX(x)‖X∗∗ ‖ϕ‖X∗ = ‖ιX(x)‖X∗∗ .

Therefore ‖x‖X = ‖ιX(x)‖X∗∗.

Remark. ιX is injective since an isometric embedding is always injective.

Definition 2.7.3. A normed vector space X is called reflexive if ιX is bijective.

Remark. 1. If X is reflexive, then X is Banach since X∗∗ is always Banach.
2. To show X is reflexive, since ιX is always injective, we only need to show ιX is surjective.

Theorem 2.7.4. Suppose X is Banach, the following holds

1. X is reflexive if and only if X∗ is reflexive.

2. If X is reflexive and Y is a closed subspace, then both Y and X/Y are reflexive.

Proof. 1. =⇒. Suppose X is reflexive, we want to show ιX∗ : X∗ → X∗∗∗ is surjective. Let
Λ ∈ X∗∗∗, we want to find ϕ ∈ X∗ s.t. ιX∗(ϕ) = Λ. Let ϕ = Λ ◦ ιX ∈ X∗.

X X∗∗

R

ιX

ϕ=Λ◦ιX
Λ
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Claim: ιX∗(ϕ) = Λ.
For any f ∈ X∗∗, since X is reflexive by assumption, we have ιX is bijective, thus there is
xf ∈ X s.t. ιX(xf ) = f . Then

ιX∗(ϕ)(f) = f(ϕ) = f(Λ ◦ ιX) = ιX(xf )(Λ ◦ ιX) = Λ ◦ ιX(xf ) = Λ ◦ f.

The claim is proved and hence X∗ is reflexive.
⇐=. Suppose X∗ is reflexive, we want to show ιX : X → X∗∗ is surjective. Since ιX is
isometric by Lemma 2.7.2, ιX(X) is a closed subspace of X∗∗. Let ψ ∈ ιX(X)⊥ ⊆ X∗∗∗,
since X∗ is reflexive by the assumption, there is ϕ ∈ X∗ s.t. ψ = ιX∗(ϕ). For any a ∈ X,
ιX(a) ∈ ιX(X), then

0 = ψ(ιX(a)) = ιX∗(ϕ)(ιX(a)) = ιX(a)(ϕ) = ϕ(a),

i.e. ϕ = 0, and then ψ = ιX∗(ϕ) = 0, thus ιX(X)⊥ = {0}. By Corollary 2.6.4 and ιX(X) is
closed, we have

ιX(X) = ιX(X) = X∗∗,

therefore ιX is surjective.

2. Assume X is reflexive and Y ⊆ X is closed. First, we want to show Y is reflexive,
i.e. ιY : Y → Y ∗∗ is surjective. Define the restriction map r : X∗ → Y ∗ by

r(ϕ) = ϕ
∣∣
Y
, ∀ϕ ∈ X∗.

Then for any ψ ∈ Y ∗∗, ψ ◦ r ∈ X∗∗.

X∗ Y ∗

R

r

ψ◦r
ψ

Since X is reflexive i.e. ιX : X → X∗∗ is bijective, there is xψ ∈ X, s.t.

ιX(xψ) = ψ ◦ r.

Claim: xψ ∈ Y .
Let f ∈ Y ⊥ ⊆ X∗, then

f(xψ) = ιX(xψ)(f) = ψ ◦ r(f) = 0,

because f ∈ Y ⊥ implies r(f) = f |Y = 0. By Corollary 2.6.3 and Y is closed, xψ ∈ Y = Y .

We have shown for any ψ ∈ Y ∗∗, there is xψ ∈ Y s.t. ιX(xψ) = ψ. Left to show ιY (xψ) = ψ.
For any g ∈ Y ∗, by Corollary 2.4.4, there is h ∈ X∗ s.t.

g = h
∣∣
Y
= r ◦ h.
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Then
ιY (xψ)(g) = g(xψ) = h(xψ) = ιX(xψ)(h) = ψ ◦ r(h) = ψ(g),

therefore ιY (xψ) = ψ, i.e. ιY is surjective and hence Y is reflexive.

Second, we want to show X/Y is reflexive, i.e. ιX/Y is surjective. Let π : X → X/Y

be the canonical projection, i.e. π(x) = [x] = x+ Y for any x ∈ X. Define T : (X/Y )∗ → X∗

by T (f) = f ◦ π, for any f ∈ (X/Y )∗.

X X/Y

R

π

T
f

In fact, ImT ⊆ Y ⊥ because for any y ∈ Y , π(y) = [y] = 0, thus for any f ∈ (X/Y )∗,
T (f)(y) = f ◦ π(y) = 0. Moreover, by Theorem 2.6.5, T : (X/Y )∗ → Y ⊥ is an isometric
isomorphism.
Fix ψ ∈ (X/Y )∗∗, we want to find xψ ∈ X/Y s.t. ιX/Y (xψ) = ψ. Notice that ψ ◦ T−1 ∈
(Y ⊥)∗ ⊆ X∗∗, then by Corollary 2.4.4, there is ϕ ∈ X∗∗ s.t.

ψ ◦ T−1 = ϕ
∣∣
Y ⊥ ,

i.e. for any g ∈ Y ⊥,
ψ ◦ T−1(g) = ϕ(g),

and for any f ∈ (X/Y )∗, Tf ∈ Y ⊥, thus

ψ(f) = ψ ◦ T−1(Tf) = ϕ(Tf) = ϕ(f ◦ π).

Since X is reflexive, there is x ∈ X s.t. ιX(x) = ϕ. Let xψ = π(x).
Claim: ιX/Y (xψ) = ψ.
For any f ∈ (X/Y )∗,

ιX/Y (xψ)(f) = f(xψ)

= f(π(x))

= f ◦ π(x)
= ιX(x)(f ◦ π)
= ϕ(f ◦ π)
= ψ(f).

The claim is proved and therefore ιX/Y is surjective.

Example 2.7.5. Every finite-dimensional normed vector space is reflexive.

Example 2.7.6. Every hilbert space is reflexive.
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Example 2.7.7. Lp is reflexive for any 1 < p <∞.

Example 2.7.8. c0 is not reflexive.

2.8 Separable space

Definition 2.8.1. A normed vector space is separable if it has a countable dense subset.

Example 2.8.2. Rn is separable.

Lemma 2.8.3. A normed vector space is separable if and only if it has a countable set
{ej}∞j=1 s.t. the set of finite linear combination of {ej}∞j=1, i.e.

n∑
j=1

ajej : aj ∈ R, n ∈ Z+


is dense.
Theorem 2.8.4. Suppose X is a normed vector space. Then

(1) If X∗ is separable, then X is separable.

(2) If X is reflexive and separable, then X∗ is separable.

Proof. Claim: (1) implies (2).
Assume (1) holds and assume X is reflexive and separable. By reflexivity, X∗∗ has the same
topology as X, thus X∗∗ is also separable. By (1), X∗ is separable.

Left to show (1). Assume X∗ is separable. Let {ϕj}∞j=1 ⊆ X∗ be dense. Denote the unit
sphere in X by S1(X), and let {bj}∞j=1 ⊆ S1(X) s.t.

ϕj(bj) ≥
1

2
‖ϕj‖ .

Define

Y =


n∑
j=1

yjbj : yj ∈ R, n ∈ Z+

 ,

by Lemma 2.8.3, it suffices to show Y is dense in X.

Claim: Y is dense.
From Corollary 2.6.4, Y is dense if and only if Y ⊥ = {0}. Let ψ ∈ Y ⊥ ⊆ X∗. Since {ϕj}∞j=1

is dense, there is {ϕjk}∞k=1 s.t. ϕjk → ψ, i.e.

‖ϕjk − ψ‖ → 0.
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Then

‖ψ‖ ≤ ‖ϕjk − ψ‖+ ‖ϕjk‖
≤ ‖ϕjk − ψ‖+ 2ϕjk(bjk)

= ‖ϕjk − ψ‖+ 2(ϕjk − ψ)(bjk) (since ψ ∈ Y ⊥)

≤ ‖ϕjk − ψ‖+ 2 ‖ϕjk − ψ‖ ‖bjk‖X
= 3 ‖ϕjk − ψ‖
→ 0,

thus ψ = 0.
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Chapter 3

Weak and weak∗ topologies

3.1 Weak topology

Motivation

The fewer open sets a topology has, the easier it is for sequences to converge. To facilitate
convergence, we will introduce a topology that is coarser than the norm topology.

However, we want this new topology to preserve important properties, such as the con-
tinuity of continuous functions. Specifically, we aim to construct the smallest, or weakest,
topology on X such that every linear functional that is continuous with respect to the norm
topology remains continuous with respect to this new topology. In other words, for any
ϕ ∈ X∗ and any open interval (ϕ(x0)− ε, ϕ(x0) + ε) ⊆ R, we want the set

ϕ−1((ϕ(x0)− ε, ϕ(x0) + ε)) = {x ∈ X : |ϕ(x)− ϕ(x0)| < ε}

to be open in the new topology. We will call these sets ”new open” sets.
Recall that a topology is closed under finite intersections, meaning the new topology must

include every finite intersection of these ”new open” sets. This gives us the sets

N(x0, ε, ϕ1, ϕ2, . . . , ϕN ) = {x ∈ X : |ϕ1(x)− ϕ1(x0)| < ε, . . . , |ϕN (x)− ϕN (x0)| < ε}

=

N⋂
i=1

{x ∈ X : |ϕi(x)− ϕi(x0)| < ε},

where x0 ∈ X, ε > 0, and ϕ1, ϕ2, . . . , ϕN ∈ X∗. Let

B = {N(x0, ε, ϕ1, ϕ2, . . . , ϕN ) : x0 ∈ X, ε > 0, ϕ1, ϕ2, . . . , ϕN ∈ X∗}

be the basis for this topology.
Thus, the weakest topology that ensures the continuity of every ϕ ∈ X∗ must contain

the basis B. Let Uw denote the topology generated by B. By construction, Uw is the
smallest topology containing B and, therefore, the weakest topology that makes every ϕ ∈ X∗

continuous.
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Definition 3.1.1. Suppose X is a normed vector space.
1. For any x0 ∈ X, define a weak neighborhood around x0 by

N(x0, A, ε) = {x ∈ X : |ϕ(x)− ϕ(x0)| < ε, ∀ϕ ∈ A},

where A ⊆ X∗ is finite and ε > 0.

2. The weak topology Uw on X is the topology generated by the basis (analog of the open
ball in the metric topology) N(x0, ε, A) where x0 ∈ X, ε > 0 and A ⊆ X∗ is finite. In
other words, we say U ⊆ X is weakly open if for any p ∈ U , there is a finite set A ⊆ X∗

and ε > 0 s.t. N(p, ε, A) ⊆ U .

3. We say {xn}∞n=1 ⊆ X converges to x∞ ∈ X weakly if xn converges to x∞ in Uw, denoted
by xn

w−→ x∞.
Remark. 1. Uw is the weakest topology on X to make every ϕ ∈ X∗ continuous.
2. Let U be the norm topology on X. For any x0 ∈ X, ε > 0 and finite A ⊆ X∗, N(x0, ε, A)

is open in U because ϕ ∈ A ⊆ X∗ is continuous in U and the finite intersection of open sets
is still open in U .
3. From Remark 2, Uw ⊆ U , Then

• Open in Uw implies open in U

• Closed in Uw implies closed in U

• Convergent in U implies convergent in Uw.
Lemma 3.1.2. xn w−→ x∞ if and only if for any ϕ ∈ X∗,

ϕ(xn) → ϕ(x∞).

Definition 3.1.3 (Convex hull). Suppose V is a vector space, A ⊆ V . Define the convex
hull of A by

Conv(A) :=
{

n∑
i=1

tiai : ti ≥ 0,

n∑
i=1

ti = 1, ai ∈ A, n ∈ Z+

}
Lemma 3.1.4. Suppose K is a convex set and n ≥ 2. Then for any v1, · · · , vn ∈ K and any
t1, · · · , tn with ti ≥ 0 and

∑n
i=1 ti = 1, we have

n∑
i=1

tivi ∈ K.

Proof. We will prove inductively. The case n = 2 is true by definition. Assume the statement
is true for n−1, i.e. for any v1, · · · , vn−1 ∈ K and any t1, · · · , tn−1 with ti ≥ 0 and

∑n−1
i=1 ti = 1,

we have
n−1∑
i=1

tivi ∈ K.
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Then for any v1, · · · , vn ∈ K and any t1, · · · , tn with ti ≥ 0 and
∑n

i=1 ti = 1, then
n−1∑
i=1

ti = 1− tn,

n−1∑
i=1

ti
1− tn

= 1,

by the assumption, we have
n−1∑
i=1

ti
1− tn

vi ∈ K.

Therefore
n∑
i=1

tivi = (1− tn)

n−1∑
i=1

ti
1− tn

vi + tnvn ∈ K.

Lemma 3.1.5. Conv(A) is the smallest convex set that contains A, i.e. Conv(A) is convex
and for any convex set K ⊆ X s.t. A ⊆ K, we have

Conv(A) ⊆ K.

Proof. 1. For any u =
∑n

i=1 tiai, v =
∑m

i=1 t
′
iai ∈ Conv(A) (we can assume m = n, otherwise,

if m < n, we can let t′m+1 = · · · = t′n = 0) and any t ∈ [0, 1],

tu+ (1− t)v = t

n∑
i=1

tiai + (1− t)

n∑
i=1

t′iai =

n∑
i=1

[tti + (1− t)t′i]ai ∈ Conv(A)

because
n∑
i=1

[tti + (1− t)t′i] = t

n∑
i=1

ti + (1− t)

n∑
i=1

t′i = t+ (1− t) = 1,

Therefore Conv(A) is convex.
2. Moreover, suppose K ⊆ X is convex and A ⊆ K. For any u =

∑n
i=1 tiai ∈ Conv(A), from

Lemma 3.1.4 we have u ∈ K.

Theorem 3.1.6 (Mazur). Suppose X is normed vector space. If there is a sequence
{xn}∞n=1 ⊆ X and x∞ ∈ X s.t. xn w−→ x∞, then1

x∞ ∈ Conv({xn}∞n=1)
norm

.

Proof. Let K := Conv({xn}∞n=1)
norm. Then K is clearly closed, and K is also convex by

Lemma 2.5.3. Suppose x∞ /∈ K. Then x∞ ∈ Kc and Kc is open, thus there is an non-empty
open ball Bε(x∞) ⊆ Kc, which is also convex. By Theorem 2.5.1, there is Λ ∈ X∗ and c ∈ R
s.t. for any k ∈ K and x ∈ Bε(x∞),

Λ(k) ≤ c < Λ(x).

1The superscript “norm” means the closure is in the norm topology.
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Then there is δ > 0 s.t.

|Λ(xj − x∞)| = Λ(x∞)− Λ(xj) ≥ Λ(x∞)− c > δ > 0, ∀j ∈ Z+,

then
lim
j→∞

|Λ(xj − x∞)| ≥ δ > 0,

which contradicts
Λ(xj) → Λ(x∞),

thus xj does not converge to x∞ weakly.

Corollary 3.1.7. Suppose X is a normed vector space and K ⊆ X is convex. Then K is
closed in U if and only if it is closed in Uw.

Proof. If K is closed in Uw, then K is also closed in U , since closed in Uw always implies
closed in U . Conversely, if K is closed in U , suppose there is {xn}∞n=1 ⊆ K and x∞ ∈ X s.t.
xn

w−→ x∞, then by Mazur’s theorem (3.1.6) and Lemma 3.1.5,

x∞ ∈ Conv({xn}∞n=1)
norm

⊆ K
norm

= K,

i.e. K is closed in Uw.

Another proof without using Mazur’s theorem. First, any closed half space H = {x ∈
X : Λ(x) ≥ c} is weakly closed, because Λ is also continuous in Uw, and then

H = Λ−1([c,∞)) ∈ Uw.

Second, by the Corollary ??,

K =
⋂

{closed half spaces H containing K}

=
⋂

{weakly closed half spaces H containing K},

then K is also weakly closed since any intersection of closed sets is also closed.

We will show a fun fact about the weak topology.

Lemma 3.1.8. Suppose X is a normed vector space with dim(X) = ∞ and ϕ1, · · · , ϕn ∈ X∗.
Then

dim
(

n⋂
i=1

Ker (ϕi)
)

= ∞,

and hence
⋂n
i=1 Ker (ϕi) 6= ∅.

Proof. .
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Theorem 3.1.9. Suppose X is an infinite-dimensional normed vector space. Then the weak
closure of the unit sphere is the closed unit ball.

Proof. 1. Since the closed unit ball B1 := {x ∈ X : ‖x‖ ≤ 1} is convex, by Corollary 3.1.7,
we have B1 = B1

norm
= B1

w. Then the unit sphere S1 ⊆ B1 = B1
w, thus S1

w ⊆ B1
w
= B1.

2. It suffices to show B1 ⊆ S1
w. For any x0 ∈ B1, let U be a weakly open set containing x0,

then there exists

N(x0, ε, A) = {x ∈ X : |ϕj(x)− ϕj(x0)| < ε, ∀ϕj ∈ A} ⊆ U

for some ε > 0 and A = {ϕ1, · · · , ϕN} ⊆ X∗. From Lemma 3.1.8, Ker (ϕj) \ {0} 6= ∅ and we
can choose y ∈ ∩Nj=1Ker (ϕj) \ {0}.
3. Claim: there is t1 ∈ R s.t. ‖x0 + t1y‖ = 1.
Let f(t) = ‖x0 + ty‖, then f(0) = ‖x0‖ ≤ 1, and

f(t) = ‖x0 + ty‖ ≥ |t| ‖y‖ − ‖x0‖ ,

so let t0 = (2 + ‖x0‖)/ ‖y‖, we have f(t0) ≥ 2. Since f is continuous and 1 ∈ [f(0), f(t0)], by
the intermediate value theorem, there is t1 ∈ (0, t0) s.t.

f(t1) = ‖x0 + t1y‖ = 1,

i.e. x0 + t1y ∈ S1.
4. On the other hand, since y is in the kernel of ϕj, we have ϕj(x0 + t1y) = ϕj(x0) for each
j = 1, · · · , N , thus

|ϕj(x0 + t1y)− ϕj(x0)| = 0 < ε, ∀j = 1, · · · , N,

i.e. x0 + t1y ∈ N(x0, ε, A). Then x0 + t1y ∈ S1 ∩N(x0, ε, A) ⊆ S1 ∩ U . Since U is arbitrary2,
we have x0 ∈ S1

w.

Definition 3.1.10. Suppose X is a real normed vector space and E ⊆ X∗, then the set
⊥E := {x ∈ X : ϕ(x) = 0, ∀ϕ ∈ E}

is called the pre-annihilator of E.

Lemma 3.1.11. Let E ⊆ X∗, then ⊥E is closed in X.

Proof. Suppose {xn}∞n=1 ⊆ ⊥E converges to x∞, then for any ϕ ∈ E,

ϕ(x∞) = ϕ( lim
n→∞

xn) = lim
n→∞

ϕ(xn) = 0,

so x∞ ∈ ⊥E.
2Recall that in the general topology, x ∈ S if and only if every neighborhood of x contains a point of S.
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Theorem 3.1.12 (weak closure of a subspace). Suppose X is a normed vector space and
E ⊆ X is a subspace.

(1) E = ⊥(E⊥) = E
w.

(2) E is closed if and only if it is weakly closed if and only if E = ⊥(E⊥).

(3) E is dense if and only if E is weakly dense if and only if E⊥ = {0}.

Theorem 3.1.13 (Eberlein-Shmulyan). A Banach space is reflexive if and only if every
bounded sequence has a weakly convergent subsequence.

Proof. “=⇒” is more interesting, we will only prove this direction.
Step 1. Let X be reflexive, and {xn}∞n=1 ⊆ X be bounded, we want to show it has a weakly
convergent subsequence. Let Y = Span({xn}), then Y is a separable, reflexive Banach space.
By Theorem 2.8.4, Y ∗ is also separable, then Y ∗ has a countable dense subset, denote it to
be {φj}∞j=1.
Step 2. By the diagonalization method, we can find a subsequence {xσ(n)}∞n=1 ⊆ {xn}∞n=1 s.t.
{φi(xσ(n))}∞n=1 converges for all i ≥ 1.
Step 3. Consider the sequence {ιX(xσ(n))}∞n=1 ⊆ X∗∗, which converges pointwise for every
element of the dense set {φj}∞j=1, then by Theorem 2.1.6, {ιX(xσ(n))}∞n=1 converges strongly
in Y ∗∗ to some element A ∈ Y ∗∗. Since X is reflexive, there is x∞ ∈ X s.t. A = ιX(x∞).
Therefore for every φ ∈ X∗,

φ(xσ(n)) = ιX(xσ(n))(φ) → ιX(x∞)(φ) = φ(x∞),

i.e. {xσ(n)}∞n=1 ⊆ {xn}∞n=1 weakly convergent.

3.2 Weak∗ topology

Definition 3.2.1. The weak∗ topology on X∗ is the weakest topology on X∗ s.t. every
element of ιX(X) ⊆ X∗∗ is continuous.

Example 3.2.2. Let X be a normed vector space. Then ι : X → X∗∗ is continuous w.r.t.
the weak topology on X and the weak∗ topology on (X∗)∗.

Proof. For any open set O ⊆ Uw∗
(X∗), we want to show ι−1(O) ∈ Uw(X). Consider the base

N = {}

Theorem 3.2.3 (Alaoglu). Suppose X is a separable normed vector space. Then every
bounded sequence in X∗ has a w∗-convergent subsequence.
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Proof. Since X is separable, there is {xj}∞j=1 ⊆ X s.t. it is countable and dense in X. Let
{ϕk}∞k=1 ⊆ X∗ be a bounded sequence, i.e.

sup
k

‖ϕk‖ <∞.

Then for any j ∈ Z+,
sup
k

|ϕk(xj)| ≤ sup
k

‖ϕk‖ · ‖xj‖ <∞,

i.e. for each j ∈ Z+, {ϕk(xj)}∞k=1 ⊆ R is bounded. For j = 1, since {ϕk(x1)}∞k=1 ⊆ R is
bounded we can find a subsequence

{ϕσ1(k)} ⊆ {ϕk}∞k=1

s.t. {ϕσ1(k)(x1)}∞k=1 converges. Since {ϕσ1(k)(x2)}∞k=1 ⊆ R is bounded, we can find a subse-
quence

{ϕσ2(k)} ⊆ {ϕσ1(k)}
∞
k=1

s.t. {ϕσ2(k)(x2)}∞k=1 converges. Iteratively, we can construct a subsequence

{ϕσj(k)} ⊆ {ϕσj−1(k)}
∞
k=1

s.t. {ϕσj(k)(xj)}∞k=1 converges. Therefore the subsequence {ϕσj(j)}∞j=1 satisfies {ϕσj(j)(xi)}∞j=1

converges for every i ≥ 1. By Banach-Steinhaus Theorem (2.1.6), {ϕσj(j)(x)}∞j=1 converges
for all x ≥ X, i.e. {ϕσj(j)}∞j=1 is w∗-convergent.

Theorem 3.2.4 (weak∗ closure of a subspace). Suppose X is a normed vector space and
E ⊆ X∗ is a subspace.

(1) E = ⊥(E⊥) = E
w∗

.

(2) E is closed if and only if it is weak∗ closed if and only if E = ⊥(E⊥).

(3) E is dense if and only if E is weak∗ dense if and only if E⊥ = {0}.

53



Notes Huarui Zhou MATH635

54



Chapter 4

Dual operator and compact operator

4.1 Dual operator

Definition 4.1.1. Let X,Y be normed vector spaces and A : X → Y . Define A∗ : Y ∗ → X∗

by
A∗ϕ = ϕ ◦ A, ∀ϕ ∈ Y ∗.

Lemma 4.1.2. Suppose X,Y are normed vector spaces and A ∈ L(X,Y ), B ∈ L(Y, Z). Then

1. A∗ ∈ L(Y ∗, X∗) and ‖A∗‖ = ‖A‖.

2. (BA)∗ = A∗B∗, and 1
∗
X = 1X∗

3. A∗∗ ∈ L(X∗∗, Y ∗∗) and A∗∗ ◦ ιX = ιY ◦ A.

Proof. 1. We have

‖A∗‖ = sup
ϕ∈Y ∗\{0}

‖A∗ϕ‖X∗

‖ϕ‖Y ∗

= sup
ϕ∈Y ∗\{0}

sup
x∈X\{0}

1

‖ϕ‖Y ∗
· |A

∗ϕ(x)|
‖x‖X

= sup
ϕ∈Y ∗\{0}

sup
x∈X\{0}

|ϕ(Ax)|
‖ϕ‖Y ∗ ‖x‖X

= sup
x∈X\{0}

1

‖x‖X
sup

ϕ∈Y ∗\{0}

|ιY (Ax)(ϕ)|
‖ϕ‖Y ∗

= sup
x∈X\{0}

‖ιY (Ax)‖Y ∗∗

‖x‖X

= sup
x∈X\{0}

‖Ax‖Y
‖x‖X

= ‖A‖ <∞.
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2. Since BA ∈ L(X,Z), (BA)∗ ∈ L(Z∗, X∗). For any ϕ ∈ Z∗,

(BA)∗(ϕ) = ϕ ◦ (BA) = (ϕ ◦B) ◦ A = B∗(ϕ) ◦ A = A∗(B∗(ϕ)) = A∗B∗(ϕ).

3. For any x ∈ X, ϕ ∈ Y ∗,

[A∗∗ ◦ ιX(x)](ϕ) = [A∗∗(ιX(x))](ϕ) = ιX(x) ◦ A∗(ϕ)

= ιX(x)(A
∗ϕ) = (A∗ϕ)(x) = ϕ(Ax) = [ιY ◦ A(x)](ϕ).

Example 4.1.3. Let X,Y be a Hilbert space. Let A ∈ L(X,Y ). A† ∈ L(Y,X) is called the
adjoint operator of A if it satisfies

〈v, Au〉 = 〈A†v, u〉, ∀u ∈ X, v ∈ Y.

If X = Y = H, A ∈ L(H), R : H → H∗ is the Riesz representation isometry, then

A† = R−1 ◦ A∗ ◦R.

Lemma 4.1.4. Let X,Y be real Hilbert spaces and A ∈ L(X,Y ), then

‖A‖2 =
∥∥A†A

∥∥ .
Proof. By the definition of adjoint operator, we have

‖A‖2 = sup
∥x∥X=1

‖Ax‖2Y = sup
∥x∥X=1

〈Ax,Ax〉

= sup
∥x∥X=1

〈A†Ax, x〉

≤ sup
∥x∥X=1

∥∥T †Tx
∥∥
X
‖x‖X

=
∥∥T †T

∥∥
≤
∥∥T †∥∥ ‖T‖

= ‖T‖2 .

Theorem 4.1.5 (Duality). Suppose X,Y are normed vector spaces and A ∈ L(X,Y ), then:

(1) Im (A)⊥ = Ker (A∗) and ⊥Im (A∗) = Ker (A).

(2) Im (A) is dense in Y if and only if A∗ is injective.

(3) A is injective if and only if A∗ has a w∗-dense image.
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Proof. (1) Notice that

Im (A)⊥ = {ϕ ∈ Y ∗ : ϕ(Ab) = 0, ∀b ∈ X}
= {ϕ ∈ Y ∗ : (A∗ϕ)(b) = 0, ∀b ∈ X}
= {ϕ ∈ Y ∗ : A∗ϕ = 0}
= Ker (A∗),

and
⊥Im (A∗) = {x ∈ X : A∗ϕ(x) = 0, ∀ϕ ∈ Y ∗}

= {x ∈ X : ϕ(Ax) = 0, ∀ϕ ∈ Y ∗}
= {x ∈ X : ιY (Ax)(ϕ) = 0, ∀ϕ ∈ Y ∗}
= {x ∈ X : ιY (Ax) = 0}
= {x ∈ X : Ax = 0}
= Ker (A).

(2)A∗ is injective if and only if {0} = Ker (A∗) = Im (A)⊥ if and only if Im (A) = Y by
Corollary 2.6.4.
(3)

Theorem 4.1.6 (Closed image theorem). Suppose X,Y are Banach and A ∈ L(X,Y ). TFAE

(1) Im (A) =⊥ Ker (A∗)

(2) Im (A) is closed in Y

(3) There is c > 0 s.t. for any w ∈ X,

‖[w]‖X/Ker (A) ≤ c ‖Ax‖Y .

(4) Im (A∗) = Ker (A)⊥

(5) Im (A∗) is w∗-closed in X∗.

(6) Im (A∗) is closed in X∗

(7) There is c > 0 s.t. for any ϕ ∈ Y ∗,

‖[ϕ]‖Y ∗/Ker (A∗) ≤ c ‖A∗ϕ‖X∗ .

Proof. (1)=⇒(2). By Lemma 3.1.11.
(2)=⇒(3)

Corollary 4.1.7. Suppose X,Y are Banach spaces, A ∈ L(X,Y ). Then
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(1) A is surjective if and only if A∗ is injective with a closed image, i.e. there is c > 0 s.t.
for any ϕ ∈ Y ∗,

‖ϕ‖Y ∗ ≤ c ‖A∗ϕ‖X∗ .

(2) A∗ is surjective if and only if A is injective with a closed image i.e. there is c > 0 s.t.
for any x ∈ X,

‖x‖X ≤ c ‖Ax‖Y .

Corollary 4.1.8. Suppose X,Y are Banach spaces, A ∈ L(X,Y ). Then

(1) A is bijective if and only if A∗ is bijective.

(2) If A∗ is bijective, then (A∗)−1 = (A−1)∗

(3) A is an isometry if and only if A∗ is an isometry.

4.2 Compact operator

Definition 4.2.1. Suppose X,Y are Banach, K ∈ L(X,Y ). K is

1. compact if for any bounded subset S ⊆ X, K(S) is compact.

2. completely continuous if the image of every weakly convergent sequence in X is norm
convergent in Y

3. finite-rank if dim Im (K) <∞.

Lemma 4.2.2. Suppose X,Y are Banach and K ∈ L(X,Y ). TFAE

(1) K is compact

(2) K(B1(0)) is compact

(3) If {xn}∞n=1 is bounded, then {Kxn}∞n=1 has a convergent subsequence.

Lemma 4.2.3. Suppose X,Y are Banach, K ∈ L(X,Y ).

(1) If K is compact, then K is completely continuous.

(2) If X is reflexive and K is completely continuous, then K is compact.

Proof. (1) Step 1. Let {xn}∞n=1 be weakly convergent.
Claim: {xn}∞n=1 is bounded.
By the definition of weakly convergence, for any ϕ ∈ X∗,

{ιX(xn)(ϕ)}∞n=1 = {ϕ(xn)}∞n=1
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is convergent and hence bounded, i.e. {ιX(xn)}∞n=1 ⊆ X∗∗ is pointwise bounded. By the
Uniformly bounded principle (2.1.2), there is c > 0 s.t.

sup
n

‖xn‖ = sup
n

‖ιX(xn)‖ < c,

i.e. {xn}∞n=1 is bounded.
Step 2. Since K is compact and {xn}∞n=1 is bounded, {Kxn}∞n=1 has a convergent subsequence
{Kxσ1(n)}∞n=1 which converges to y∞ ∈ Y .
Claim: Kxn → y∞.
Suppose {Kxn}∞n=1 does not converge to y∞, there is ε > 0 s.t. for all N ∈ Z+, there is
n > N s.t.

‖Kxn − y∞‖ ≥ ε,

so there is a new subsequence {Kxσ2(n)}∞n=1 s.t.∥∥Kxσ2(n) − y∞
∥∥ ≥ ε.

{xσ2(n)}∞n=1 is weakly convergent thus bounded, then there is a convergent subsequence

{Kxσ3(n)}
∞
n=1 ⊆ {Kxσ2(n)}

∞
n=1,

s.t. Kxσ3(n) → z∞ ∈ Y and z∞ 6= y∞. By Corollary 2.4.6, there is ψ ∈ Y ∗ s.t.

ψ(y∞) 6= ψ(z∞).

However, let x∞ be the weak limit of {xn}∞n=1, then

ψ(y∞) = lim
n→∞

ψ(Kxσ1(n)) = lim
n→∞

K∗ψ(xσ1(n)) = K∗ψ(x∞),

similarly,
ψ(z∞) = K∗ψ(x∞),

which contradicts ψ(y∞) 6= ψ(z∞).
(2) Assume X is reflexive and K is completely continuous. Let {xn}∞n=1 ⊆ X be a bounded
sequence, then by Theorem 3.1.13, there is a weakly convergent subsequence

{xσ(n)}∞n=1 ⊆ {xn}∞n=1.

By the definition of “completely continuous”, {Kxσ(n)}∞n=1 is convergent, so K is compact.

Example 4.2.4. Suppose X,Y are Banach, K ∈ L(X,Y ) is finite-rank, then K is compact.

Example 4.2.5. Consider the space L2(S1), any function f ∈ L2(S1) can be spanned in this
way:

f(t) =
∑
k∈Z

fke
ikt,
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where fk ∈ C. Define the norm ‖·‖L2 and ‖·‖H1
by

‖f‖L2 =

√
2π
∑
k∈Z

|fk|2,

and

‖f‖H1
=

√
‖f‖2L2 +

∥∥∥∥ df
dt

∥∥∥∥2
L2

=

√
2π
∑
k∈Z

(1 + k2)|fk|2.

Let H1 = {f ∈ L2(S1), s.t. ‖f‖H1
<∞.}

Proposition. The inclusion map ι : H1 → L2(S1) is compact.

Proof. Let {fn}∞n=1 ⊆ H1 s.t. it is bounded, i.e. there is M > 0 s.t.

sup
n

‖fn‖2H1
< M,

i.e. for any n ≥ 1, ∑
k∈Z

(1 + k2)|fnk |
2 < M.

Then {fnk }
∞
n=1 ⊆ C is bounded for every k ∈ Z. By Bolzano–Weierstrass theorem, there is

a subsequence {fσ0(n)}∞n=1 ⊆ {fn}∞n=1 ⊆ H1 s.t. {fσ0(n)
0 }∞n=1 ⊆ C converges. Inductively, we

can find subsequences

{fσk(n)}∞n=1 ⊆ {fσk−1(n)}∞n=1 ⊆ · · · ⊆ {fn}∞n=1 ⊆ H1,

s.t. {fσk(n)
j }∞n=1 ⊆ C converges for all |j| ≤ k. We can then pass to the diagonal subsequence

{fσn(n)}∞n=1 to get
{fσn(n)
j }∞n=1

converges for all j ∈ Z.
Claim: {fσn(n)}∞n=1 converges in L2(S1).
It suffices to show it is Cauchy. Given ε > 0, we want to find N s.t. for any l,m ≥ N ,∥∥∥fσl(l) − fσm(m)

∥∥∥
L2
< ε.

Notice that there is k0 ≥ 1 s.t. for all |k| ≥ k0,

4M

1 + k2
<
ε2

2
.
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Then∥∥∥fσl(l) − fσm(m)
∥∥∥2
L2

= 2π
∑
k∈Z

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2
≤ 2π

∑
k:|k|<k0

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2 + 2π

1 + k20

∑
k:|k|≥k0

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2 (1 + k2)

≤ 2π
∑

k:|k|<k0

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2 + 1

1 + k20

∥∥∥fσl(l) − fσm(m)
∥∥∥2
H1

≤ 2π
∑

k:|k|<k0

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2 + 4M

1 + k20

≤ 2π
∑

k:|k|<k0

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2 + ε2

2
.

Since {fσn(n)
k }∞n=1 converges for all k ∈ Z, there is N ≥ 1 s.t. for all l,m ≥ N and |k| < k0,

2π
∑

k:|k|<k0

∣∣∣fσl(l)
k − f

σm(m)
k

∣∣∣2 < ε2

2
,

therefore ∥∥∥fσl(l) − fσm(m)
∥∥∥2
L2
< ε2.

Theorem 4.2.6. Suppose X,Y, Z are Banach, A ∈ L(X,Y ), B ∈ L(Y, Z).

(1) If A or B is compact, then B ◦ A is compact.

(2) K(X,Y ) is a closed subspace of L(X,Y )

(3) A ∈ K(X,Y ) if and only if A∗ ∈ K(Y ∗, X∗).

Proof. (1) Clear
(2) Step 1. Let {Kj}∞j=1 ⊆ K(X,Y ) s.t.

Kj
∥·∥−−→ K∞ ∈ L(X,Y ),

we want to show K∞ is compact. Let {xn}∞n=1 ⊆ X be a bounded sequence, say ‖xn‖ ≤ M

for all n, our goal is to show {K∞(xn)}∞n=1 has a convergent subsequence.
Step 2. Since K1 is compact, {xn}∞n=1 is bounded, we can find a subsequence

{xσ1(n)}
∞
n=1 ⊆ {xn}∞n=1
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s.t. {K1xσ1(n)}∞n=1 converges, iteratively, we can find subsequences

{xσk(n)}
∞
n=1 ⊆ {xσk−1(n)}

∞
n=1 ⊆ · · · ⊆ {xσ1(n)}

∞
n=1 ⊆ {xn}∞n=1

s.t. {Kjxσk(n)}∞n=1 converges for all j ≤ k. Therefore, we find a subsequence

{xσn(n)}
∞
n=1 ⊆ {xn}∞n=1

s.t. {Kjxσn(n)}∞n=1 converges for all j ≥ 1.
Step 3. Now we want to show {K∞xσn(n)}∞n=1 converges, i.e. it is Cauchy.
Let ε > 0, we want to find N > 0 s.t.

|K∞xσn(n) −K∞xσm(m)| < ε, ∀m,n ≥ N.

Since Kj → K∞ in norm, there is N1 > 0 s.t.

‖Kj −K∞‖ < ε

4M
, ∀j ≥ N1.

Choose j0 = N1, then

|K∞xσn(n) −K∞xσm(m)| = |(K∞ −Kj0)(xσn(n) − xσm(m)) +Kj0(xσn(n) − xσm(m))|
≤ |(K∞ −Kj0)(xσn(n) − xσm(m))|+ |Kj0(xσn(n) − xσm(m))|
≤ ‖K∞ −Kj0‖ ·

∥∥xσn(n) − xσm(m)

∥∥+ |Kj0(xσn(n) − xσm(m))|

≤ ε

4M
· 2M + |Kj0(xσn(n) − xσm(m))|

=
ε

2
+ |Kj0(xσn(n) − xσm(m))|.

Since {Kj0xσn(n)}∞n=1 converges, hence is Cauchy, there is N > 0 s.t.

|Kj0(xσn(n) − xσm(m))| <
ε

2
, ∀m,n ≥ N,

thus
|K∞xσn(n) −K∞xσm(m)| < ε, ∀m,n ≥ N.

Therefore, K∞ is compact and K(X,Y ) is closed.

(3) We only prove A ∈ K(X,Y ) =⇒ A∗ ∈ K(Y ∗, X∗). The other direction is similar.
Step 1. Let A ∈ K(X,Y ), then A(B1(0)) is a compact subset of Y , denoted as M , which is
a compact metric space. For ϕ ∈ Y ∗, define fϕ :M → R by fϕ = ϕ|M . Define

F = {fϕ ∈ C(M) : ‖ϕ‖Y ∗ ≤ 1} ⊆ C(M).

For any ϕ ∈ Y ∗,∥∥fϕ∥∥C(M)
= supx ∈ X : ‖x‖X ≤ 1ϕ(Ax) = supx ∈ X : ‖x‖X ≤ 1A∗ϕ(x) = ‖A∗ϕ‖X∗ . (∗)
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Step 2. F is a bounded subset of C(M).
For fϕ ∈ F , ∥∥fϕ∥∥C(M)

= sup
y∈M

|fϕ(y)|

= sup
x∈X:∥x∥≤1

|ϕ(Ax)|

≤ sup
x∈X:∥x∥≤1

‖ϕ‖Y ∗ · ‖A‖ · ‖x‖X

≤ ‖A‖ , (since ‖ϕ‖Y ∗ ≤ 1 and ‖x‖ ≤ 1)

Step 3. F is pre-compact in C(M).
By Arzelà–Ascoli theorem A.2.3, it suffices to show F is equi-continuous. For any y1, y2 ∈M

and fϕ ∈ F ,

|fϕ(y1)− fϕ(y2)| = |ϕ(y1)− ϕ(y2)| ≤ ‖ϕ‖Y ∗ ‖y1 − y2‖Y ≤ ‖y1 − y2‖Y ,

therefore F is equi-continuous and hence pre-compact.
Step 4. Finally, A∗ is compact.
We will show A∗(BY ∗

1 (0)) is pre-compact. Let {ϕn}∞n=1 ⊆ BY ∗

1 (0), i.e. ‖ϕn‖Y ∗ ≤ 1, so
{fϕn

}∞n=1 ⊆ F . Since F is pre-compact, by Theorem A.2.1, it has a convergent subsequence
{fϕσ(n)

}∞n=1. Then by (∗),∥∥A∗ϕσ(m) − A∗ϕσ(n)
∥∥
X∗ =

∥∥fϕσ(m)
− fϕσ(n)

∥∥
C(M)

,

i.e. {A∗ϕσ(n)}∞n=1 ⊆ A∗(BY ∗

1 (0)) is Cauchy and thus convergent. By Theorem A.2.1 again,
A∗(BY ∗

1 (0)) is pre-compact, therefore A∗ is compact.
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Chapter 5

Spectral theory

5.1 Spectrum

Definition 5.1.1. Let X be Banach, A ∈ L(X). Define the spectrum of A by

σ(A) = {λ ∈ C : λ1− A is not bijective} = Pσ(A) t Cσ(A) tRσ(A),

where Pσ is the point spectrum,

Pσ := {λ ∈ σ(A) : λ1− A is not injective},

Cσ is the continuous spectrum

Cσ := {λ ∈ σ(A) : λ1− A is injective and Im (λ1− A) is dense in X},

Rσ is the residual spectrum

Rσ := {λ ∈ σ(A) : λ1− A is injective and Im (λ1− A) is not dense in X}.

Define the resolvent set of A by

ρ(A) = σ(A)c = {λ ∈ C : λ1− A is bijective}.

Example 5.1.2 (Spectrum of left-shift operator). Let X = ℓ2, define A ∈ L(ℓ2) by

A(x1, x2, · · · ) = (x2, x3, · · · ), ∀(x1, x2, · · · ) ∈ X.

For any (x1, x2, · · · ), (y1, y2, · · · ) ∈ X, we have

〈A(x1, x2, · · · ), (y1, y2, · · · )〉 = x2y1 + x3y2 + · · · = 〈(x1, x2, · · · ), (0, y1, y2, · · · )〉,

so
A†(y1, y2, · · · ) = (0, y1, y2, · · · ).

Claim: σ(A) = σ(A†) = B1(0).
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Proof. Let λ ∈ B1(0) \ {0}, then (λ, λ2, · · · ) ∈ X because
∞∑
n=1

|λn|2 = |λ|2

1− |λ|2
<∞.

And observe that
A(λ, λ2, · · · ) = (λ2, λ3, · · · ) = λ(λ, λ2, · · · ),

which implies λ is an eigenvalue, i.e. λ ∈ B1(0) \ {0} ⊆ Pσ(A). And

A(1, 0, 0, · · · ) = 0,

so 0 ∈ Pσ(A) and hence B1(0) ⊆ Pσ(A).

Suppose λ ∈ Pσ(A) ∩ Bc
1(0), then there is v = (v1, v2, · · · ) ∈ X s.t.

(v2, v3, · · · ) = λ(v1, v2, · · · ),

i.e. v2 = λv1, v3 = λv2, · · · , and we have

vn = λn−1v1,

i.e.
v = (v1, λv1, λ

2v1, · · · ),

however
∞∑
n=1

|λn−1v1|2 = |v1|2
∞∑
n=1

|λ|2(n−1)

is not convergent because |λ| ≥ 1. Therefore B1(0) \ {0} = ∅, thus Pσ(A) = B1(0).

Consider other spectrum, let λ ∈ σ(A) \ Pσ(A). Then (λ1−A) is injective. If Im (λ1−A) is
closed, then Im (λI − A) is Banach. Since (λ1 − A) : X → Im (λ1 − A) is bijective, by the
inverse operator theorem (2.2.6), there is c > 0 s.t. for any v ∈ X,

‖v‖ ≤ c ‖λ1− A‖ . (∗)

Suppose λ ∈ S1, choose ε > 0, consider the sequence (v1, v2, · · · ) ∈ X where

vj = (
λ

1 + ε
)j .

We have

‖(λ1− A)v‖2 =
∞∑
j=1

|λvj − vj+1|2 =
∞∑
j=1

∣∣∣∣λvj − λ

1 + ε
vj

∣∣∣∣2 = |λ|2ε2

(1 + ε)2

∞∑
j=1

|vj |2 =
ε2

(1 + ε)2
‖v‖ ,
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then (∗) implies

‖v‖2 ≤ c2 ‖λ1− A‖2 = c2ε2

(1 + ε)2
‖v‖2 ,

so
1 ≤ c2ε2

(1 + ε)2
,

but since ε is arbitrary, if we choose ε = 1/c, then

c2ε2

(1 + ε)2
=

1

(1 + 1/c)2
< 1,

which leads to a contradiction! So for any λ ∈ S1, Im (λ1 − A) is not closed, hence
Im (λ1− A) ⊊ X, and S1 ⊆ σ(A).

For any λ ∈ S1, is Im (λ1− A) dense in X? Notice that

X = Im (λ1− A)⊕ Ker ((λ1− A)†) = Im (λ1− A)⊕ Ker (λ1− A†).

If v = (v1, v2, · · · ) ∈ Ker (λ1− A†), we have

0 = (λ1− A†)(v1, v2, · · · ) = (λv1, λv2 − v1, λv3 − v2, · · · ),

then v1 = 0, v2 = 0, · · · , and hence v = 0. Therefore X = Im (λ1− A) and Im (λ1 − A) is
dense in X, i.e. S1 ⊆ Cσ(A). Now we have shown B1(0) ⊆ Pσ(A) ∪ Cσ(A).

If λ ∈ B1(0)
c, i.e. λ > 1. Let A ∈ L(X) s.t. ‖A‖ = 1,

λ1− A = λ(1− A

λ
),

where the spectrum radius rA/λ ≤ ‖A/λ‖ < 1, thus 1 − A/λ is invertible by Theorem 1.6.5
and so is λ1− A, therefore λ1− A is bijective and λ /∈ σ(A). Together, we have

Pσ(A) = B1(0), Cσ(A) = S1, Rσ(A) = ∅.

Similarly, we can show that

Pσ(A
†) = ∅, Cσ(A

†) = S1, Rσ(A
†) = B1(0).

Theorem 5.1.3. Let X be Banach, A ∈ L(X).

(1) σ(A) is compact in C.

(2) σ(A) = σ(A∗).

(3) Pσ(A
∗) ⊆ Pσ(A) ∪Rσ(A), Pσ(A) ⊆ Pσ(A

∗) ∪Rσ(A∗),
Rσ(A

∗) ⊆ Pσ(A) ∪ Cσ(A), Rσ(A) ⊆ Pσ(A
∗),

Cσ(A
∗) ⊆ Cσ(A), Cσ(A) ⊆ Rσ(A

∗) ∪ Cσ(A∗).
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(4) If X is reflexive, then Cσ(A
∗) = Cσ(A) and Rσ(A

∗) ⊆ Pσ(A).

Proof. (1) If |λ| > ‖A‖, then

rA/λ ≤
∥∥∥∥Aλ
∥∥∥∥ =

‖A‖
|λ|

< 1,

by Theorem 1.6.5, we have 1−A/λ is invertible, thus λ1−A is invertible and hence bijective.
So σ(A) ⊆ B∥A∥(0), i.e. σ(A) is bounded. It suffices to show σ(A) is closed, then by Heine-
Borel theorem, σ(A) is compact. We will then show ρ(A) = σ(A)c is open. For any λ ∈ ρ(A),
λ1−A is invertible. The set of all invertible operators denoted G is open by Theorem 1.6.5,
then there is Bδ(λ1 − A) ⊆ G for some δ > 0. Let Bε = (λ + ε)1 − A, where ε ∈ C satisfies
0 ≤ |ε| < δ, then

‖Bε − (λ1− A)‖ = ‖ε1‖ = |ε| < δ,

so Bε ∈ Bδ(λ1 − A) ⊆ G is invertible, i.e. λ + ε ∈ ρ(A) for any 0 ≤ |ε| < δ, which implies
Bδ(λ) ⊆ ρ(A), hence we have shown ρ(A) is open.
(2) By Corollary 4.1.8, λ1 − A is bijective if and only if (λ1 − A)∗ = λ1 − A∗ is bijective,
thus ρ(A) = ρ(A∗) and hence σ(A) = σ(A∗).
(3)We only prove part of these relations.
(i) Prove Pσ(A∗) ⊆ Pσ(A) ∪Rσ(A).
First Pσ(A∗) ⊆ σ(A) by (2). Let λ ∈ Pσ(A

∗), then λ1−A∗ is not injective, by Theorem 4.1.5,
Im (λ1− A) is not dense, thus λ /∈ Cσ(A).
(ii) Prove Rσ(A∗) ⊆ Pσ(A) ∪ Cσ(A).
Let λ ∈ Rσ(A

∗), then λ1 − A∗ is injective but has no dense image. By Theorem 4.1.5,
injectivity implies that λ1− A is dense, thus λ /∈ Rσ(A).
(iii) Prove Cσ(A∗) ⊆ Cσ(A).
Let λ ∈ Cσ(A

∗), then λ1 − A∗ is injective and Im (λ1 − A∗) is dense. By Theorem 3.2.4,
λ1 − A∗ is also weak∗ dense, then by Theorem 4.1.5, λ1 − A is injective, thus λ /∈ Pσ(A).
Again by Theorem 4.1.5, λ1 − A∗ is injective implies λ1 − A has a dense image. Therefore
λ ∈ Cσ(A).

Theorem 5.1.4. Let X be Banach, A ∈ L(A), then σ(A) 6= ∅ and

rA = sup
λ∈σ(A)

|λ|.

Proof. If |λ| > rA, then

rA/λ = lim
n→∞

∥∥∥∥(Aλ
)n∥∥∥∥1/n =

rA
|λ|

< 1,

then 1− A/λ is invertible by Theorem 1.6.5 and so is λ1− A. Thus λ /∈ σ(A), then

sup
λ∈σ(A)

|λ| ≤ rA.
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Suppose supλ∈σ(A) |λ| < rA. Then there is ε > 0 s.t. for any λ ∈ C with |λ| = rA − ε, we
have λ /∈ σ(A), i.e. λ1− A is bijective and hence (λ1− A)−1 ≤ M for some M > 0. By the
holomorphic functional calculus, for any n ≥ 1,

An =
1

2πi

∫
|λ|=rA−ε

λn(λ1− A)−1 dλ,

thus

‖An‖ ≤ 1

2π

∫
|λ|=rA−ε

|λ|n
∥∥(λ1− A)−1

∥∥ dλ

≤ |rA − ε|nM
2π

∫
|λ|=rA−ε

dλ

≤ C|rA − ε|n+1

,

and then
‖An‖1/n ≤ |rA − ε|1+1/nC1/n,

let n→ ∞, we have
rA ≤ rA − ε,

i.e. rA < rA, leading to a contradiction!

5.2 Spectrum of compact operators

Proposition 5.2.1. Suppose X is an infinite-dimensional Banach space, T ∈ K(X), then
0 ∈ σ(T ).

Proof. Assume 0 /∈ σ(T ), then T = −(01 − T ) is bijective, and by the Inverse operator
theorem (2.2.6), T−1 ∈ L(X), then 1 = T−1 ◦ T is compact (4.2.6), hence

B1(0) = 1(B1(0))

is compact, which contradicts Theorem 1.2.7.

Definition 5.2.2. Let A ∈ L(X), define the eigenspace w.r.t. λ by Eλ(A) := Ker (λI − A).

Theorem 5.2.3. Let X be Banach, T ∈ K(X), then for any ε > 0,⊕
λ∈Pσ(T ):|λ|≥ε

Eλ(T )

is finite-dimensional, i.e. there is a finite number of λi ∈ Pσ(T ) s.t. for each i,

|λi| ≥ ε, dimEλi
(T ) <∞.
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Proof. Step 1. Suppose not, then there is a sequence of linearly independent vectors {xj}∞j=1

s.t.
Txj = λjxj , ∀j ≥ 1,

where λj ∈ Pσ(T ) and |λj | ≥ ε. Let Yk = Span({x1, x2, · · · , xk}). Choose y1 ∈ Y1 s.t.
‖y1‖ = 1. By Riesz’s Lemma (1.5.6), there is y2 ∈ Y2 s.t. ‖y2‖ = 1 and

‖y2 − z‖ ≥ 1

2
, ∀z ∈ Y1.

Iteratively, we can find a sequence {yk}∞k=1 ⊆ X s.t. yk+1 ∈ Yk+1, ‖yk+1‖ = 1 and

‖yk+1 − z‖ ≥ 1

2
, ∀z ∈ Yk.

Step 2. Claim: {T ( yk
λk

)}∞k=1 does not contain any Cauchy subsequences.

Let yk =
∑k

j=1 ajxj, then

T (
yk
λk

) = akxk +
1

λk

k−1∑
j=1

ajTxj = akxk +
1

λk

k−1∑
j=1

ajλjxj = yk + zk,

for some zk ∈ Yk−1. Then for any n with n < k, we have∥∥∥∥T ( ykλk )− T (
yn
λn

)

∥∥∥∥ = ‖yk + zk − (yn + zn)‖ = ‖yk + (zk − yn − zn)‖ ≥ 1

2
,

because zk − yn − zn ∈ Yk−1. Thus the claim is proved.
Step 3. Since ∥∥∥∥ ykλk

∥∥∥∥ =
‖yk‖
|λk|

≤ 1

ε
,

{ yk
λk

}∞k=1 is bounded, then by the compactness of T , {T ( yk
λk

)}∞k=1 must have a convergent
subsequence, i.e. a Cauchy subsequence, which is a contradiction!

Remark. This theorem shows that the point spectrum of a compact operator is at most a
sequence λi converging to 0.

Proposition 5.2.4. Let X be Banach, T ∈ K(X), then Im (λI − T ) is closed for all λ 6= 0.

Proof. For any y ∈ Im (λ1− T ), there is x ∈ X s.t. y = (λ1− T )x. Let

Zy := (λ1− T )−1({y}) = {z ∈ X : (λ1− T )z = y},

then Zy = x+ Eλ(T ). Define
α(y) = inf

z∈Zy

‖z‖ .
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Claim: There is C > 0 s.t.

α(y) ≤ C ‖y‖ , ∀y ∈ Im (λ1− T ).

Based on the claim, now we can prove this proposition. Let {yn}∞n=1 ⊆ Im (λ1 − T ) s.t.
yn → y∞ ∈ X, we want to show y∞ ∈ Im (λ1 − T ). Since yn → y∞, {yn}∞n=1 is bounded, by
the above claim, there is {xn}∞n=1 ⊆ X s.t. (λ1− T )xn = yn and

sup
n

‖xn‖ ≤ C sup
n

‖yn‖ <∞

for some C > 0, i.e. it is bounded. Then by the compactness of T , there is a subsequence
{xσ(n)}∞n=1 ⊆ {xn}∞n=1 s.t. {Txσ(n)}∞n=1 converges, let u ∈ X be the limit. Then

y∞ = lim
n→∞

yn = lim
n→∞

(λ1− T )xn = lim
n→∞

(λ1− T )xσ(n) = λ lim
n→∞

xσ(n) − u,

so
lim
n→∞

xσ(n) =
y∞ + u

λ
:= x∞ ∈ X,

then by the continuity of λ1− T , we have

y∞ = lim
n→∞

(λ1− T )xσ(n) = (λ1− T ) lim
n→∞

xσ(n) = (λ1− T )x∞,

i.e. y∞ ∈ Im (λ1− T ). Therefore Im (λ1− T ) is closed.

Corollary 5.2.5. Let X be Banach, T ∈ K(X), then Cσ(T ) ⊆ {0}.

Proof. If λ ∈ Cσ(T ) and λ 6= 0, then λ1− T is injective and

Im (λ1− T ) = Im (λ1− T ) = X,

i.e. λ1− T is surjective, thus λ1− T is bijective, a contradiction!

Definition 5.2.6. Let X,Y be Banach spaces, A ∈ L(X,Y ) is called a Fredholm operator,
denoted by A ∈ F (X,Y ) if both Ker (A) and Ker (A∗) are finite-rank and Im (A) is closed.

Definition 5.2.7. Define the index mapping Ind : F (X,Y ) → Z by

Ind(A) := dim Ker (A)− dim Ker (A∗), ∀A ∈ F (X,Y ).

Theorem 5.2.8. Ind is continuous.

Corollary 5.2.9. Ind is locally constant.

Corollary 5.2.10. Let X be Banach, T ∈ K(X) and λ 6= 0, then λI − T is injective if and
only if it is surjective.
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Proof. Define f : [0, 1] → F (X) by f(s) = λ1− sT for all s ∈ [0, 1]. Then Ind ◦ f : [0, 1] → Z
is continuous, thus Ind ◦ f is constant. Since

Ind(f(0)) = dim Ker (λ1)− dim Ker ((λ1)∗) = 0− 0 = 0,

we have Ind(f(1)) = Ind(f(0)) = 0, i.e.

dim Ker (λ1− T ) = dim Ker ((λ1− T )∗) = dim Coker(λ1− T ) = dim Im (λ1− T ).

Corollary 5.2.11. If T ∈ K(X), then

σ(T ) = {0} ∪ Pσ(T ).

5.3 Spectrum of self-adjoint operators

Definition 5.3.1. Suppose H is a Hilbert space, A ∈ L(H) is self-adjoint (s.a.) if

A† = A,

i.e. 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H.

Remark. For any x ∈ H, 〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉, so 〈Ax, x〉 ∈ R.

Proposition 5.3.2. Suppose H is a Hilbert space, A ∈ L(H) is s.a., then

Pσ(A) ⊆ R.

Proof. Let λ ∈ Pσ(A), v ∈ Eλ(A) \ {0}, then

λ ‖v‖2 = 〈λv, v〉 = 〈Av, v〉 = 〈v, A†v〉 = 〈v, Av〉 = 〈v, λv〉 = λ ‖v‖2 ,

so λ = λ, i.e. λ ∈ R.
Actually, we have a stronger result (Propostion 5.3.5).

Lemma 5.3.3. Suppose H is a Hilbert space, A ∈ L(H) is s.a. Then Rσ(A) = ∅.

Proof. Let λ ∈ Rσ, then λ1 − A does not have a dense image, then by Theorem 4.1.5,
(λ1−A)† = λ1−A† = λ1−A is injective, i.e. λ ∈ Pσ(A). By Proposition 5.3.2, λ = λ ∈ Pσ(A),
contradiction!.

Lemma 5.3.4. Suppose H is a Hilbert space, A ∈ L(H) is s.a. Let λ ∈ C, if there is c ≥ 0

s.t.
‖(A− λ1)x‖ ≥ c ‖x‖ , ∀x ∈ H,

then λ /∈ σ(A).
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Proof. Let λ ∈ σ(A), by Lemma 5.3.3, λ ∈ Pσ(A) t Cσ(A). The inequality implies A− λ1 is
injective and has a closed image. Injectivity means λ /∈ Pσ, then we must have λ ∈ Cσ(A),
i.e. A− λ1 has a dense image. However, closed image means A− λ1 is surjective and hence
bijective, then λ /∈ σ(A), contradiction!

Proposition 5.3.5. Suppose H is a Hilbert space, A ∈ L(H) is s.a., then

σ(A) ⊆ R.

Proof. Suppose λ = a+ ib ∈ σ(A) where b 6= 0. Then for any x ∈ H \ {0},

〈(A− λ1)x, x〉 = 〈(A− (a+ ib))x, x〉 = 〈(A− a)x, x〉+ ib ‖x‖2 ,

where 〈(A− a)x, x〉 = 〈Ax, x〉 − a ‖x‖2 ∈ R. Then

|〈(A− λ1)x, x〉|2 = |〈(A− a)x, x〉|2 + |b|2 ‖x‖4 ,

by Cauchy-Schwarz,

|b| ‖x‖2 | ≤ |〈(A− λ1)x, x〉| ≤ ‖(A− λ1)x‖ ‖x‖ ,

i.e.
|b| ‖x‖ ≤ ‖(A− λ1)x‖ ,

by Lemma 5.3.4, λ /∈ σ(A), it is a contradiction.

Proposition 5.3.6. Suppose H is a Hilbert space, A ∈ L(H) is s.a., λ1, λ2 ∈ Pσ(A) s.t.
λ1 6= λ2, then

Eλ1
(A) ⊥ Eλ2

(A).

Proof. Let v1 ∈ Eλ1
(A) \ {0}, v2 ∈ Eλ2

(A) \ {0}. Then

λ1〈v1, v2〉 = 〈Av1, v2〉 = 〈v1, Av2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉 = λ2〈v1, v2〉,

therefore (λ1 − λ2)〈v1, v2〉 = 0, and hence 〈v1, v2〉 = 0.

Proposition 5.3.7. Suppose H is a separable Hilbert space, T ∈ L(H) is compact and s.a.
Then

H =
⊕

λ∈Pσ(T )

Eλ(T ),

and H has a unitary eigenbasis of T , i.e. H has a basis {uj}∞j=1 s.t. Tuj = λjuj, ‖uj‖ = 1

for all j, and uj ⊥ uk for all j 6= k.

Proof. Step 1. By definition of ‖T‖, i.e. T = sup∥v∥=1 ‖Tv‖, there is a sequence {vj}∞j=1 s.t.
‖vj‖ = 1 and

lim
j→∞

‖Tvj‖ = ‖T‖ . (∗)
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Since {vj}∞j=1 is bounded, by Alaoglu’s theorem (3.2.3), there is a subsequence {vσ(j)}∞j=1 ⊆
{vj}∞j=1 s.t. vσ(j) w−→ v∞ for some v∞ ∈ H.
Step 2. Claim: ‖v∞‖ = 1.
First,

1 = lim
j→∞

∥∥vσ(j)∥∥2
= lim

j→∞

∥∥vσ(j) − v∞ + v∞
∥∥2

= lim
j→∞

(
‖v∞‖2 +

∥∥vσ(j) − v∞
∥∥2 + 2Re (〈v∞, vσ(j) − v∞〉)

)
= ‖v∞‖2 + lim

j→∞

∥∥vσ(j) − v∞
∥∥2 ,

so ‖v∞‖ ≤ 1.
Second, by vσ(j)

w−→ v∞, we have Tvσ(j) → Tv∞, then ‖Tvσ(j)‖ → ‖Tv∞‖. Also by (∗), we
have ‖Tvσ(j)‖ → ‖T‖. Thus ‖Tv∞‖ = ‖T‖. Then

‖T‖ = ‖Tv∞‖ ≤ ‖T‖ ‖v∞‖ ,

so ‖v∞‖ ≥ 1. Therefore we have proved the claim. By the above argument, we also find that
T achieves its maximum on v∞
Step 3.

Corollary 5.3.8. Let H1, H2 be Hilbert spaces and H1 be separable. Let Fin(H1, H2) denote
the (non-closed) subspace of finite-rank operators in L(H1, H2), then

Fin(H1, H2) = K(H1, H2).

5.4 Spectrum of normal operators

Definition 5.4.1. Let H be a Hilbert space. A ∈ L(H) is called

(1) normal if [A,A†] := AA† − A†A = 0.

(2) unitary if AA† = 1 = A†A.

Remark. 1. If A is unitary, then A preserves the norm because

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A†Ax〉 = ‖x‖2 .

2. A unitary operator is always normal.

Theorem 5.4.2. Let H be a Hilbert space and A ∈ L(H) be normal. Then

(1) ‖An‖ = ‖A‖n
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(2) rA = ‖A‖ = supλ∈σ(A) |λ|

(3) Rσ(A) = Rσ(A
†) = ∅ and Pσ(A

†) = {λ ∈ C : λ ∈ Pσ(A)}.

(4) If A is unitary, then σ(A) ⊆ S1.
Proof. (1) First,

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A†Ax〉 = 〈x,AA†x〉 = 〈AA†x, x〉 = 〈A†x,A†x〉 =
∥∥A†x

∥∥2 ,
and∥∥A†Ax

∥∥2 = 〈A†Ax,A†Ax〉 = 〈AA†Ax,Ax〉 = 〈A†A2x,Ax〉 = 〈Ax,A†A2x〉 = 〈A2x,A2x〉 =
∥∥A2x

∥∥2 ,
moreover,

‖Ax‖2 = 〈x,A†Ax〉 ≤
∥∥A†Ax

∥∥ ‖x‖ =
∥∥A2x

∥∥ ‖x‖ ,
so

‖A‖2 = sup
∥x∥=1

‖Ax‖2 ≤ sup
∥x∥=1

∥∥A2x
∥∥ ‖x‖ =

∥∥A2
∥∥ .

It’s clear that
∥∥A2

∥∥ ≤ ‖A‖2, therefore
∥∥A2

∥∥ = ‖A‖2. By induction, we have for any k ≥ 0,∥∥∥A2k
∥∥∥ = ‖A‖2

k

.

Next, for any n ∈ Z+, we can choose m ∈ Z+ s.t. 2m > n. Then

‖A‖2
m−n ‖A‖n = ‖A‖2

m

=
∥∥∥A2m

∥∥∥ =
∥∥∥A2m−nAn

∥∥∥ ≤
∥∥∥A2m−n

∥∥∥ ‖An‖ ,
so we have

‖A‖n ≤ ‖An‖ .
Since we always have ‖An‖ ≤ ‖A‖n, thus ‖A‖n = ‖An‖.
(2)By Theorem 5.1.4,

sup
λ∈σ(A)

|λ| = rA = lim
n→∞

‖An‖1/n = lim
n→∞

(‖A‖n)1/n = ‖A‖ .

(3)Let λ ∈ C, then

5.5 Integration

Lemma 5.5.1. Let X be Banach, and c : [a, b] → X be continuous. Then there exists a
unique v ∈ X s.t. for all φ ∈ X∗,

φ(v) =

∫ b

a

φ(c(t))dt.

The v is denoted
v :=

∫ b

a

c(t)dt.
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Definition 5.5.2. Let X be Banach, and c : [a, b] → X be continuous. c is called differen-
tiable at t ∈ [a, b] if

lim
h→0

c(t+ h)− c(t)

h

exists. We denote the limit c′(t). c is called differentiable on [a, b] if it is differentiable for
any t ∈ [a, b].

Proposition 5.5.3 (properties of integration).
Definition 5.5.4. Let Ω ⊆ C be open and X be a C-Banach space. Let f : Ω → X be
continuous. f is called holomorphic if

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists for all z ∈ Ω.

Definition 5.5.5. Let γ : [a, b] → Ω be C1, f : Ω → X be continuous, define the integral of
f along the curve γ by ∫

γ

f dz =
∫ b

a

f(γ(t))γ′(t)dt.

Theorem 5.5.6 (Cauchy integral theorem). Let f be holomorphic in Ω ⊆ C and BR(z0) ⊆ Ω.
Then

1

2π

∫
|z−z0|=R

f(z)

z − w
dz =

{
f(w) if w ∈ BR(z0)

0 otherwise

Lemma 5.5.7. Let A : Ω ⊆ C → L(X,Y ) be weakly continuous, meaning φ◦A is continuous
for any φ ∈ L(X,Y )∗. Then TFAE:

(1) A is holomorphic

(2) x 7→ ϕ(A(z)x) is holomorphic for any z ∈ Ω, x ∈ X and ϕ ∈ Y ∗.

(3) for any Br(z0) ⊆ Ω, γ(t) = z0 + re2πit : [0, 1] → Ω and any w ∈ Br(z0), ϕ ∈ Y ∗, x ∈ X,

ϕ(A(w)x) =
1

2πi

∫
γ

ϕ(A(z)x)

z − w
dz.

Definition 5.5.8. Let X be a complex Banach space, A ∈ L(X). Let U ⊆ C be open s.t.
σ(A) ⊆ U . Let γ = {γ1, · · · , γm} be a collection of simple piecewise smooth closed curves
where γj : S1 → U \ σ(A). For any holomorphic function f : U → C, define

f(A) =
1

2πi

∫
γ

f(z)(z1− A)−1 dz.

Example 5.5.9.
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5.6 Functional calculus

Definition 5.6.1. 1. A unital C∗ algebra (A, ∗) or A is a complex unital Banach algebra
equipped with an antilinear involution ∗ denoted A → A : a 7→ a∗ satisfying for any
a, b ∈ A and λ ∈ C

(i) (ab)∗ = b∗a∗

(ii) 1∗ = 1

(iii) a∗∗ = a

(iv) (λa)∗ = λa∗

(v) ‖a∗a‖ = ‖a‖2

2. A is called commutative if ab = ba for all a, b ∈ A.

3. A C∗-homomorphism between 2 unital C∗ algebra A and B is a map φ ∈ L(A,B) s.t.

φ(1A) = 1B, φ(ab) = φ(a)φ(b), φ(a∗) = φ(a)∗, ∀a ∈ A, b ∈ B.

Example 5.6.2. Let H be Hilbert, A = L(H). For any a ∈ A, define a∗ := a†, then A is a
unital C∗ algebra.

Example 5.6.3. Let (M,d) be a metric space, Cb(M) be the set of bounded continuous
functions f : M → C. Cb(M) is a Banach algebra. For any f ∈ Cb(M), define f∗ = f , then
(Cb(M), ∗) is a commutative C∗ algebra.

Lemma 5.6.4. Let H be a Hilbert space, A ∈ L(H). For any polynomial p : C → C defined
by

p(z) =

n∑
k=0

akz
k, ∀z ∈ C

where ak ∈ C and an 6= 0, we define p : L(H) → L(H) by

p(A) =

n∑
k=0

akA
k, ∀A ∈ L(H).

Then for any polynomials p and q,

(1) (p+ q)(A) = p(A) + q(A)

(2) (pq)(A) = p(A)q(A)

(3) σ(p(A)) = p(σ(A)).

(4) If A is normal, then p(A) is normal.
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Proof. (1) (2) are obvious. (3) Let µ ∈ σ(A), then µ1− A is not bijective. Since µ is a zero
for the polynomial p(µ)− p(z), thus

p(µ)− p(z) = (µ− z)q(z),

where q is a polynomial of degree n− 1. Then p(µ)1− p(A) = (µ1− A)q(A) is not bijective
because µ1− A is not bijective, and hence p(u) ∈ σ(p(A)).
Conversely, if τ ∈ σ(p(A)), by factorization,

τ − p(z) = α

n∏
j=1

(µj − z),

then
τ1− p(A) = α

n∏
j=1

(µj1− A).

Since τ1− p(A) is not bijective, µj01−A is not bijective for some 1 ≤ j0 ≤ n, i.e. µj0 ∈ σ(A).
Since µj0 is a zero for τ − p(z), we have τ = p(µj0), i.e. τ ∈ p(σ(A)).
(4) If A is normal, AA† = A†A. Define q(A†) = p(A)†, then AA† = A†A implies

p(A)q(A†) = q(A†)p(A),

i.e. p(A)p(A)† = p(A)†p(A) and hence p(A) is normal.

Theorem 5.6.5. Let H be a Hilbert space, A ∈ L(H) is s.a. Let Σ = σ(A) ⊆ R and C(Σ) be
the set of continuous function f : Σ → C. Then there is a unital C∗ algebra homomorphism
ΦA ∈ L(C(Σ),L(H)) denoted by

ΦA(f) = f(A), ∀f ∈ C(Σ)

s.t.

(1) 1(A) = 1H and (fg)(A) = f(A)g(A) for all f, g ∈ C(Σ)

(2) f(A) = f(A)†

(3) idΣ(A) = A

(4) If B ∈ L(H) s.t. [A,B] = 0, then [f(A), B] = 0 for all f ∈ C(Σ).

(5) ΦA(C(Σ)) is the smallest C∗ subalgebra of L(H) containing A

(6) If λ ∈ Σ and x ∈ Eλ(A), then f(A)x = f(λ)x for all f ∈ C(Σ)

(7) f(A) is normal and σ(f(A)) = f(σ(A)) for all f ∈ C(Σ)

(8) If f ∈ C(Σ,R) and g ∈ C(f(Σ)), then (g ◦ f)(A) = g(f(A))
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Proof. Step 1:

Definition 5.6.6. Let H be a Hilbert space, A ∈ L(H) is called positive semidefinite (p.s.d.)
if

〈Ax, x〉 ≥ 0, ∀x ∈ H.

We write A ≥ 0 if A is p.s.d.

Corollary 5.6.7. Let H be a Hilbert space. Let A ∈ L(H) be s.a. and p.s.d., then there is
a unique B ∈ L(H) s.t. B is s.a., p.s.d., and B2 = A.

Proof. Claim: σ(A) ⊆ [0,∞).
Let λ ∈ σ(A). Suppose λ < 0, then

‖(A− λ1)x‖ ‖x‖ ≥ 〈(A− λ1)x, x〉 = 〈Ax, x〉 − λ ‖x‖2 ≥ |λ| ‖x‖2 ,

so for x ∈ H \ {0},
‖(A− λ1)x‖ ≥ |λ| ‖x‖ ,

by Lemma 5.3.4, λ /∈ σ(A). Thus λ ≥ 0, i.e. σ(A) ⊆ [0,∞).
Define f : σ(A) → [0,∞) by f(λ) =

√
λ for all λ ∈ σ(A). Then f is continuous since√

· : [0,∞) → [0,∞) is continuous and σ(A) is compact.

5.7 Measurable functional calculus

Definition 5.7.1 (Projection valued measure). Let H be Hilbert, Σ ⊆ C be a non-empty
closed subset. Let BΣ denote the collection of Borel subsets of Σ. Then a projection valued
Borel measure on Σ is a map BΣ → L(H) : Ω 7→ PΩ s.t.

(1) For any Ω ∈ BΣ, PΩ is a s.a. unitary projection.

(2) P∅ = 0, PΣ = 1H .

(3) For any Ω1,Ω2 ∈ BΣ,
PΩ1∩Ω2

= PΩ1
PΩ2

= PΩ2
PΩ1

.

(4) If {Ωj}∞j=1 ⊆ BΣ are pairwise disjoint and Ω = t∞
j=1Ωj, then for any x ∈ H,

PΩx = lim
n→∞

n∑
j=1

PΩj
x.

Definition 5.7.2. Let B(Σ) := {f : Σ → C : f is bounded and Borel measurable}. It’s
clear B(Σ) is a C∗ algebra.
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Theorem 5.7.3. Let H be a complex Hilbert space. Let Σ ⊆ C be closed. Let Ω 7→ PΩ be a
projection valued measure on Σ. For any x, y ∈ H, define the signed Borel measure

µx,y(Ω) = Re 〈x, PΩy〉, ∀Ω ∈ BΣ.

Then there is a unique Ψ ∈ L(B(Σ),L(H)) s.t. for any x, y ∈ H, f ∈ B(Σ),

Re 〈x,Ψ(f)y〉 =
∫
Σ

Re (f)dµx,y +
∫
Σ

Im (f)dµx,iy.

Proof. Step 1.

Theorem 5.7.4. Let H be a complex Hilbert space, A ∈ L(H) and Σ = σ(A). Then there is
a unique projection valued measure Ω 7→ PΩ s.t. for any x, y ∈ H,

Re 〈x,Ay〉 =
∫
Σ

Re (λ)dµx,y(λ) +
∫
Σ

Im (λ)dµx,iy(λ).

5.8 Cyclic vectors

Theorem 5.8.1. Suppose H is a complex Hilbert space and A ∈ L(H) is s.a. Then there is
a collection of compact sets

Σi ⊆ σ(A),

i ∈ I, Borel measures µi ∈ M(Σi) and an isometric isomorphism

U : H →
⊕
i∈I

L2(Σi, µi)

s.t. for any i ∈ I, ψi ∈ L2(Σi, µi), and λ ∈ Σi,

(UAU−1ψi)(λ) = λψi(λ),

i.e. UAU−1 diagonalizes A. If H is separable, then I is countable.
Definition 5.8.2. Let A ∈ L(H) be s.a. x ∈ H is cyclic for A if

H = Span({Anx : n ≥ 0}).

Theorem 5.8.3. Let A ∈ L(H) be s.a. and x ∈ H be cyclic for A. Let Σ = σ(A). Let µx be
the measure s.t. ∫

Σ

f dµx = 〈x, f(A)x〉, ∀f ∈ C(Σ).

Then

(1) There is a unique U ∈ L(H,L2(Σ, µx)) s.t. U is isometric and

U−1ψ = ψ(A)x, ∀ψ ∈ C(Σ).
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(2) Let f ∈ B(Σ), then
Uf(A)U−1ψ = fψ, ∀ψ ∈ L2(Σ, µx).

(3) (UAU−1ψ)(λ) = λψ(λ) for all ψ ∈ L2(Σ, µx) and λ ∈ Σ.

(4) If Ω ⊆ Σ is relatively open and nonempty, then

µx(Ω) > 0.

Proof. Let T ∈ L(C(Σ), H) given by

Tψ = ψ(A)x, ∀ψ ∈ C(Σ)

Claim 1: T is isometric.
For any ψ ∈ C(Σ), we have

‖Tψ‖2 = 〈ψ(A)x, ψ(A)x〉
= 〈x, ψ†(A)ψ(A)x〉
= 〈x, ψ(A)ψ(A)x〉
= 〈x, |ψ|2(A)x〉

=

∫
Σ

|ψ|2 dµx

= ‖ψ‖2L2 ,

Thus T ∈ L(C(Σ, H), H) is isometric.

Since any continuous function ψ ∈ C(Σ) can be approximated by simple functions in
L2(Σ, µx), we have C(Σ) is dense in L2(Σ, µx), then we can extend T uniquely to T̃ ∈
L(L2(Σ, µx), H) s.t. T̃ is isometric and

T̃ψ = ψ(A)x, ∀ψ ∈ L2(Σ, µx).

For simplicity, we denote T̃ as T .

Claim 2. T ∈ L(L2(Σ, µx), H) is isometric isomorphism.
We only need to show T is surjective. Let ψn(λ) = λn, then

Tψn = ψn(A)x = Anx,

Therefore
H = Span({Anx : n ≥ 0}) ⊆ Im (T ) ⊆ H,

i.e. Im (T ) = H and T is surjective.
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Then T is bijective and hence invertible, let U = T−1.
(1)Obviously true
(2)For any f ∈ B(Σ), ψ ∈ L2(Σ, µx), we have fψ ∈ L2(Σ, µx), then

f(A)U−1ψ = f(A)ψ(A)x = (fψ)(A)x = U−1(fψ),

so Uf(A)U−1ψ = fψ.
(3) follows from (2).
(4)

Corollary 5.8.4. Let H be a complex Hilbert space. Let x ∈ H \ {0} and A ∈ L(H) be s.a.
Define

Hx = Span({Anx : n ≥ 0}),

then Hx is the smallest closed A-invariant subspace of H containing x. Define Ax = A|Hx
,

let Σx = σ(Ax). Then by Theorem 5.8.3, there is a unique isometric isomorphism Ux ∈
L(Hx, L

2(Σx, µx)) s.t.
U−1
x ψ = ψ(Ax)x, ∀ψ ∈ L2(Σx, µx).

Proof of Theorem 5.8.1.
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Chapter 6

Unbounded operators

6.1 Definition

Definition 6.1.1. Let X,Y be Banach.

(1) An unbounded linear operator from X to Y is a pair (A,dom(A)) where dom(A) ⊆ X

and A : dom(A) → Y is linear.

(2) A is densely defined if dom(A) is dense in X.

(3) A is closed if ΓA := {(x,Ax) : x ∈ dom(A)} is closed in X × Y .

(4) Let A : dom(A) ⊆ X → Y and B : dom(B) ⊆ Y → Z are unbounded linear operators,
then define BA : dom(BA) ⊆ X → Z to be the operator with

dom(BA) = {x ∈ dom(A) : Ax ∈ dom(B)},

and BA(x) = B(Ax) for all x ∈ dom(BA).

Remark. 1. Recall that dom(A) is a normed vector space w.r.t. ΓA norm and A is bounded
w.r.t. this norm.
2. If A is closed, then dom(A) is Banach w.r.t. ΓA norm.

Example 6.1.2. Let C([0, 1]) be the set of all continuous functions on [0, 1], and C1([0, 1]) ⊆
C([0, 1]) be the set of all continuously differentiable functions on [0, 1]. (C([0, 1]), ‖·‖∞) is
Banach. C1([0, 1]) is dense in C([0, 1]) by Stone–Weierstrass theorem. Define

D : dom(D) = C1([0, 1]) → C([0, 1])

by
Df =

d
dxf, ∀f ∈ C1([0, 1]).

Then D is a densely defined, closed unbounded linear operator.

Definition 6.1.3. Let (A,dom(A)) be a closed unbounded linear operator from X to X.
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(1) The spectrum of A is defined as

σ(A) := {λ ∈ C : λ1− A : dom(A) → X is not bijective}.

(2) And
σ(A) = Pσ(A) t Cσ(A) tRσ(A)

where Pσ(A), Cσ(A) and Rσ(A) are defined analogously to those for bounded linear
operators.

(3) Define ρ(A) = σ(A)c.

(4) For λ ∈ ρ(A), Rλ(A) := (λ1− A)−1 : X → dom(A) ⊆ X is the resolvent operator of A at
λ.

Lemma 6.1.4. σ(A) is closed.

Proof. We want to show ρ(A) is open. Let λ ∈ ρ(A), then λ1−A : dom(A) → X is bijective.
Let µ ∈ C,

µ1− A = λ1− A+ (µ− λ)1 = (λ1− A)(1+ (µ− λ)(λ1− A)−1)

is bijective if and only if 1+ (µ− λ)(λ1− A)−1 is bijective. The latter is bijective if

r(λ−µ)(λ1−A)−1 < 1,

if
|λ− µ| ·

∥∥(λ1− A)−1
∥∥ < 1,

if
|λ− µ| < 1

‖(λ1− A)−1‖
.

Therefore, let δ = 1/
∥∥(λ1− A)−1

∥∥, for any µ ∈ Bδ(λ), µ1−A is bijective, i.e. µ ∈ ρ(A), thus
ρ(A) is open.

Lemma 6.1.5. Rλ(A) ∈ L(X).

Proof. It’s clear Rλ(A) is linear. Since A is closed, λ1−A is closed, i.e. the graph of λ1−A is
closed in X×X. Then since λ1−A is bijective the graph of Rλ(A) = (λ1−A)−1 : X → dom(A)

is also closed in X ×X. By closed graph theorem, Rλ(A) is bounded.

Lemma 6.1.6. Let A : dom(A) ⊊ X → X be a densely defined unbounded operator. Let
µ ∈ ρ(A), then

Pσ(Rµ(A)) = { 1

µ− λ
: λ ∈ Pσ(A)},

Cσ(Rµ(A)) = { 1

µ− λ
: λ ∈ Cσ(A)} ∪ {0},
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Rσ(Rµ(A)) = { 1

µ− λ
: λ ∈ Rσ(A)}.

(Here Rσ(A) means the residual spectrum of A, and Rλ(A) means the resolvent operator of
A.)

Proof. Since Rµ(A) : X → dom(A) ⊊ X is bijective, Rµ(A) : X → X is not bijective, hence
0 ∈ σ(A). Since −Rµ(A) = 01 − Rµ(A) is injective, we have 0 /∈ Pσ(Rµ(A)). Moreover,
Im (01 − Rµ(A)) = Im (Rµ(A)) = dom(A) is dense in X, so 0 /∈ Rσ(Rµ(A)). Therefore
0 ∈ Cσ(Rµ(A)).
For λ 6= µ (because µ ∈ ρ(A)),

1

µ− λ
1−Rµ(A) =

1

µ− λ
(1− (µ− λ)(µ1− A)−1)

=

(
1

µ− λ
(µ1− A)− 1

)
Rµ(A)

=
1

µ− λ
(µ1− A− (µ− λ)1)Rµ(A)

=
1

µ− λ
(λ1− A)Rµ(A).

The left hand side is injective if and only if λ1 − A is injective, is surjective if and only if
λ1− A is surjective, and has a dense image if and only if λ1− A has a dense image.

Definition 6.1.7. Suppose A : dom(A) ⊆ X → X is a closed, densely defined unbounded
operator. We say A has compact resolvent if ρ(A) 6= ∅ and Rµ(A) is compact for all µ ∈ ρ(A).

Corollary 6.1.8. Suppose A has compact resolvent. Then σ(A) = Pσ(A) is a discrete subset
of C and Eλ(A) has a finite dimension for all λ ∈ σ(A).

6.2 Adjoints of unbounded operators

Definition 6.2.1. Let X,Y be Hilbert spaces. Let A : dom(A) ⊆ X → Y be a densely
defined unbounded linear operator. The adjoint of A, denoted A† : dom(A†) ⊆ Y → X is
defined as follows:

(i) dom(A†) = {y ∈ Y : there is Cy ≥ 0 s.t. |〈Ax, y〉| ≤ Cy ‖x‖ for all x ∈ dom(A)}

(ii) For any y ∈ dom(A†) ⊆ Y , ϕ : dom(A) ⊆ X → C defined by x 7→ 〈Ax, y〉 is a bounded
linear functional, and can be uniquely extended to all elements in X because dom(A) is
dense in X. By Riesz’s representation theorem, there is a unique v ∈ X s.t. ϕ(x) = 〈x, v〉
for all x ∈ X, and define A†y = v, i.e.

〈Ax, y〉 = 〈x,A†y〉, ∀x ∈ dom(A).
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A is called self-adjoint (s.a.) if X = Y , dom(A) = dom(A†) and

A†x = Ax, ∀x ∈ dom(A).

Proposition 6.2.2. A† is closed.

Proof. We want to show ΓA† is closed in Y ×X. Let {yn}∞n=1 ⊆ dom(A†) s.t. yn → y∞ and
A†yn → x∞. Our goal is to show y∞ ∈ dom(A†) and x∞ = A†y∞.
For any x ∈ dom(A),

〈Ax, y∞〉 = lim
n→∞

〈Ax, yn〉 = lim
n→∞

〈x,A†yn〉 = 〈x, x∞〉,

thus
|〈Ax, y∞〉| ≤ ‖x∞‖ ‖x‖ ,

i.e. y∞ ∈ dom(A†). And by definition,

〈Ax, y∞〉 = 〈x,A†y∞〉, ∀x ∈ dom(A)

then
〈x,A†y∞ − x∞〉 = 0, ∀x ∈ dom(A).

Since dom(A) is dense in X, there is {xn}∞n=1 ⊆ dom(A) s.t. xn → A†y∞ − x∞, so

〈A†y∞ − x∞, A
†y∞ − x∞〉 = 〈 lim

n→∞
xn, A

†y∞ − x∞〉 = lim
n→∞

〈xn, A†y∞ − x∞〉 = 0,

which implies x∞ = A†y∞.

Proposition 6.2.3 (Properties of the adjoint operator). Let X,Y be Hilbert spaces. Let
A : dom(A) ⊆ X → Y be a densely defined unbounded linear operator. Then

(1) If P ∈ L(X,Y ), λ ∈ C, then

(A+ P )† = A† + P †, (λA)† = λA†.

(2) A is closeable if and only if dom(A†) is dense in Y .

(3) A is closed if and only if A†† = A

Lemma 6.2.4. Let A : dom(A) ⊆ X → Y be a densely defined unbounded linear operator.
Let J : Y ×X → X × Y be J(y, x) = (−x, y), then

Γ⊥
A = J(ΓA†).

Proof. If (x,Ax) ∈ ΓA and (y, A†y) ∈ ΓA†, then

〈(x,Ax), J(y, A†y)〉X×Y = 〈(x,Ax), (−A†y, y)〉X×Y = 〈x,−A†y〉X + 〈Ax, y〉Y = 0,
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so J(ΓA†) ⊆ Γ⊥
A.

Conversely, suppose (u, v) ∈ Γ⊥
A, we want to show (z, w) ∈ J(ΓA†), i.e. (w,−z) ∈ ΓA†. For

any x ∈ dom(A), by definition of Γ⊥
A,

〈(x,Ax), (z, w)〉X×Y = 0,

then
〈x,−z〉X = 〈Ax,w〉Y ,

thus
|〈Ax,w〉Y | ≤ ‖z‖X · ‖x‖X ,

which shows w ∈ dom(A†). Moreover,

〈x,−z〉X = 〈Ax,w〉Y = 〈x,A†w〉X , ∀x ∈ dom(A),

thus
〈x,A†w + z〉X = 0, ∀x ∈ dom(A),

since dom(A) is dense in X, we have A†w = −z, therefore (w,−z) ∈ ΓA†.

Proof of Proposition 6.2.3. (i) Clear.
(ii) Suppose dom(A†) is not dense, then dom(A†)

⊥
6= {0}. Let y ∈ dom(A†)

⊥
\ {0}, then for

any w ∈ dom(A†),
〈(0, y), (−A†w,w)〉X×Y = 〈y, w〉Y = 0,

thus
(0, y) ∈ (JΓA†)⊥ = (Γ⊥

A)
⊥ = ΓA,

which means the projection ΓA → X is not injective, thus by Lemma 2.3.5, A is not closeable.
This argument is reversible, so the reverse is also true.
(iii) If A = A††, then by Lemma 6.2.2, A is closed. If A is closed, then

ΓA = ΓA = (Γ⊥
A)

⊥ = (JΓA†)⊥.

Lemma 6.2.5. 1+ A†A : dom(A†A) → X is bijective.

Proof. Step 1. Let u ∈ dom(A†A), then u ∈ dom(A), and

〈u,A†Au〉 = 〈Au,Au〉 = ‖Au‖2 ,

so
‖u‖

∥∥(1+ A†A)u
∥∥ ≥ 〈u, (1+ A†A)u〉 = ‖u‖2 + ‖Au‖2 ≥ ‖u‖2 .

For u 6= 0, ∥∥(1+ A†A)u
∥∥ ≥ ‖u‖ ,
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therefore 1+ A†A is injective (and has a closed image).
Step 2. Let w ∈ X, define Λw ∈ (dom(A)ΓA

)∗ by

Λw(x) = 〈x,w〉X , ∀x ∈ dom(A)ΓA
.

Since A is closed, dom(A)ΓA
is closed, hence Hilbert, then there is v ∈ dom(A)ΓA

s.t.

Λw(x) = 〈x, v〉ΓA
= 〈x, v〉X + 〈Ax,Av〉Y , ∀x ∈ dom(A)ΓA

.

Therefore
〈x,w〉X = Λw(x) = 〈x, v〉X + 〈Ax,Av〉Y , ∀x ∈ dom(A)ΓA

,

then
|〈Ax,Av〉Y | = |〈x,w − v〉X | ≤ ‖x‖ ‖w − v‖ ,

so Av ∈ dom(A†). Then

〈x, v〉ΓA
= 〈x, v〉X + 〈Ax,Av〉Y = 〈x, v〉X + 〈x,A†Av〉X = 〈x, (1+ A†A)v〉X ,

and then
〈x, (1+ A†A)v〉X = 〈x,w〉X , ∀x ∈ dom(A)ΓA

.

Since dom(A) is dense in X, we have (1+ A†A)v = w, i.e. 1+ A†A is surjective.

Lemma 6.2.6. dom(A†A) is dense in X.

Proof. Consider the inclusion map i : dom(A)ΓA
→ (X, 〈·, ·〉X). For the adjoint operator i†,

since
|〈i(x), y〉X | = |〈x, y〉X | ≤ ‖y‖ · ‖y‖ , ∀x ∈ dom(A), y ∈ X,

we have dom(i†) = X, and for any x ∈ dom(A)ΓA
and y ∈ dom(i†) = X,

〈i(x), y〉X = 〈x, i†(y)〉ΓA
.

Define Λ = (1+ A†A)−1 : X → dom(A†A), which is bijective by Lemma 6.2.5. Then for any
w ∈ X, x ∈ dom(A),

〈x, i†(w)〉ΓA
= 〈i(x), w〉X
= 〈x, (1+ A†A)Λw〉X
= 〈x,Λw〉X + 〈x,A†AΛw〉X
= 〈x,Λw〉X + 〈Ax,AΛw〉X
= 〈x,Λw〉ΓA

,

since dom(A) is dense in X, we have i†(w) = Λw. Then

Im (i†) = Im (Λ) = dom(A†A).
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By Theorem 4.1.5, Im (i†) is dense if and only if (i†)† is injective.
Claim: (i†)† = i, hence it is injective.
First, for any y ∈ dom(A) = dom(i) and x ∈ dom(i†) = X, we have

|〈i†(x), y〉ΓA
| = |〈x, i(y)〉X | = |〈x, y〉X | ≤ ‖y‖ · ‖x‖ ,

so dom(i††) = dom(A).
Second, for any w ∈ dom(i††) = dom(A)ΓA

and x ∈ dom(i†) = X,

〈i††(w), x〉X = 〈w, i†(x)〉ΓA
= 〈i(w), x〉X ,

thus i††(w) = i(w) for all w ∈ dom(i††) = X.

Theorem 6.2.7. Let X,Y be complex Hilbert spaces. Let A : dom(A) ⊆ X → Y be a closed,
densely defined unbounded linear operator. Then A†A is s.a., well-defined.

Proof. We want show (1) dom(A†A) = dom((A†A)†) and (2) for any x ∈ dom(A†A),

(A†A)†x = A†Ax.

Step 1: dom(A†A) ⊆ dom((A†A)†).
For any w ∈ dom(A†A), Aw ∈ dom(A†), thus for any x ∈ dom(A†A),

〈A†Aw, x〉 = 〈Aw,Ax〉 = 〈w,A†Ax〉,

so
|〈A†Aw, x〉| ≤

∥∥A†Ax
∥∥ · ‖w‖ ,

i.e. w ∈ dom((A†A)†).
Step 2: dom((A†A)†) ⊆ dom(A†A).
Let v ∈ dom((A†A)†), then for any u ∈ dom(A†A),

〈v, A†Au〉 = 〈(A†A)†v, u〉,

so
|〈v, A†Au〉X | ≤ ‖u‖X ·

∥∥(A†A)†v
∥∥
X
.

Define Λ ∈ (dom(A)ΓA
)∗ by

Λu = 〈A†Au, v〉X + 〈u, v〉X , ∀u ∈ dom(A†A),

and since dom(A†A) is dense, we can extend the domain continuously to dom(A)ΓA
! Then

by Riesz’s representation theorem, there is w ∈ dom(A)ΓA
s.t.

Λu = 〈u,w〉ΓA
= 〈u,w〉X + 〈Au,Aw〉X .

Then for u ∈ dom(A†A),

〈u, v〉X + 〈A†Au, v〉X = 〈u,w〉X + 〈Au,Aw〉X ,
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since Au ∈ dom(A†),

〈u, v〉X + 〈A†Au, v〉X = 〈u,w〉X + 〈A†Au, v〉X ,

i.e.
〈(1+ A†A)u, v − w〉X = 0, ∀u ∈ dom(A†A).

Since 1 + A†A is bijection and dom(A†A) is dense, we have v = w, thus v ∈ dom(A). Then
for any u ∈ dom(A†A),

〈v, A†Au〉X = 〈Av,Au〉X ,

and
|〈Av,Au〉X | = |〈v, A†Au〉X | ≤ ‖u‖X ·

∥∥(A†A)†v
∥∥
X
,

which implies Av ∈ dom(A†), therefore v ∈ dom(A†A).
Step 3. Now we have shown dom(A†A) = dom((A†A)†). For any x, y ∈ dom(A†A),

〈(A†A)†x, y〉 = 〈x,A†Ay〉 = 〈Ax,Ay〉 = 〈A†Ax, y〉,

since dom(A†A) is dense in X, we have (A†A)†x = A†Ax.

6.3 Functional calculus

Theorem 6.3.1. Let H be a complex Hilbert space.

(1) Let A : dom(A) ⊆ H → H be s.a. By the same argument for bounded s.a. operator,
σ(A) ⊆ R. So we can define an invertible operator U : H → H by

U = (A− i1)(A− i1)−1.

Then U is unitary, 1−U is injective, dom(A) = Im (1−U) where A = i(1+U)(1−U)−1.
U is called the Cayley transform of A.

(2) Let U ∈ L(H) be unitary s.t. 1− U is injective. Then

A = i(1+ U)(1− U)−1 : dom(A) → H,

where dom(A) = Im (1− U), is s.a. and U is the Cayley transform of A.
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Appendix A

Some theorems

A.1 Zorn’s lemma

Definition A.1.1. A partially ordered set (S,�) is a pair consisting a set S and a relation
� on S called partial order s.t. for any x, y, z ∈ S

(1) x � x;

(2) If x � y and y � x, then x = y;

(3) If x � y and y � z, then x � z.

Definition A.1.2. Suppose (S,�) is a partial ordered set. T ⊆ S is a subset (thus also a
partial ordered set).

1. For any x, y ∈ S, denote x ≺ y if x � y and x 6= y.

2. x, y ∈ S are called comparable if either x � y or y � x.

3. T is called a chain (or totally ordered set) if any x, y ∈ T are comparable.

4. s ∈ S is called an upper bounded of T if for any x ∈ T , s and x are comparable, and
moreover x � s.

5. m ∈ S is called a maximal element of S if there is no such x ∈ S s.t. m ≺ x.

Theorem A.1.3 (Zorn’s lemma). Suppose (S,�) is a partially ordered set. If every chain
in S has an upper bound in S, then S has at least one maximal element.

The following is a simple application of Zorn’s lemma.

Definition A.1.4. Suppose V is a vector space and B ⊆ V is a subset.

1. B is called linearly independent, if for any finite subset {v1, · · · , vn} ⊆ B, if there is
scalars ci ∈ R (1 ≤ i ≤ n) s.t.

c1v1 + c2v2 + · · ·+ cnvn = 0,
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then ci = 0 for all 1 ≤ i ≤ n.

2. B spans V , denoted by V = Span(B), if for any v ∈ V , there is a finite subset
{v1, · · · , vn} ⊆ B and scalars ci ∈ R (1 ≤ i ≤ n) s.t.

v = c1v1 + c2v2 + · · ·+ cnvn.

3. B is called a Hamel basis of V if

(a) B is linearly independent;
(b) Span(B) = V .

Lemma A.1.5. Suppose B ⊆ V is a linearly independent subset, if Span(B) ⊊ V , then for
any v ∈ V \ Span(B), B ∪ {v} is linearly independent.

Proof. Take v ∈ V \ Span(B), it is clear v 6= 0. Assume B ∪ {v} is dependent, then there is
a finite subset {v1, · · · , vn} ⊆ B and not all 0 scalars ci ∈ R (1 ≤ i ≤ n+ 1) s.t.

c1v1 + · · ·+ cnvn + cn+1v = 0.

Moreover, cn+1 6= 0, otherwise ci = 0 for all 1 ≤ i ≤ n+1, then B∪{v} is linearly independent.
Therefore

v =
c1
cn+1

v1 + · · ·+ cn
cn+1

vn,

i.e. v ∈ Span(B).

Theorem A.1.6. Every vector space has a Hamel basis.

Proof. Let V be a vector space, define

P := {B ⊆ V : B is linearly independent},

then (P ,⊆) is a partially ordered set. For any chain C ⊆ P, define

BC =
⋃
B∈C

B,

then BC is linearly independent, thus BC ∈ P and then it is an upper bound of C. By Zorn’s
lemma (A.1.3), there is a maximal element Bm ∈ P. It’s clear Span(Bm) = V , otherwise, we
can find v ∈ V \Span(Bm) s.t. Bm∪{v} ∈ P, which means Bm is not a maximal element.

A.2 Compact sets

Theorem A.2.1. Suppose (X, d) is a metric space and A ⊆ X. TFAE

(1) A is pre-compact.
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(2) Every sequence in A has a convergent subsequence.

(3) A is totally bounded and every Cauchy sequence in A converges in X.

Definition A.2.2. F ⊆ C(X) is equi-continuous if for every ε > 0, there is δ > 0 s.t. for all
x, y ∈ X satisfying

d(x, y) < δ,

we have
|f(x)− f(y)| < ε, ∀f ∈ F .

Theorem A.2.3. Suppose (X, d) is a compact metric space and F ⊆ C(X). Then

(1) F is pre-compact if and only if it is bounded and equi-continuous.

(2) F is compact if and only if it is closed, bounded, and equi-continuous.
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